SR
Sy

= :;':&‘!z

oo |

= e
e

Soxoen




Copyright © 1981 by Garland Publishing, Inc.

All rights reserved. No part of this work covered by the copyright hereon may be
reproduced or used in any form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval
systems—without permission of the publisher.

Figures reproduced with the permission of Advanced Micro Devices.

15 14 13 12 11 10 9 8 7 6

Library of Congress Cataloging in Publication Data

White, Donnamaie E. 1942~
Bit-slice design.

Includes index.

1. Bit slice microprocessors—Design and construction. I. Title.
TK7895.M5W49 621.3819'58'2 79-7465
ISBN 0-8240-7103-4

Published by Garland STPM Press
136 Madison Avenue, New York, New York 10016

Printed in the United States of America



_ Contents

Preface vii

1 Introduction 1
Selection of the Implementation 1
Microprogramming 5
Advantages of LSI 6
The 2900 Family 6
Language Interrelationships 7
Controller Design 12

2 Simple Controllers 19
Sequential Execution 21
Multiple Sequences 23
Start Addresses 24
Mapping PROM 24
Unconditional Branch 26
Conditional Branch 28

Timing Considerations 30



vi

Bit-Slice Design

3 Adding Programming Support to the Controller

Expanded Testing
Subroutines

Nested Subroutines

Stack Size

Loops

Am2909/11

CASE Statement (Am29803A)
Microprogram Memory

Refining the CCU

Status Polling

Interrupt Servicing
Implementation

Am2910

Am2910 Instructions

Control Lines

Interrupt Handling

Am2914

Interconnection of the Am2914

Evolution of the ALU
Instruction Formats
Control Unit Function
PC and MAR

Improving ALU Speed
Adding Flexibility
Am2901

The ALU and Basic Arithmetic
Further Enhancements

Instruction Fields

Instruction Set Extensions

Sample Operations
Arithmetic—General

Multiplication with the Am2901
Am?2903 Multiply

43
43
43
47
49
49
22
33
& )5

61
61
63
63
70
71
81
82
85
85

97
97
98
99
101
105
111

117
117
121
121
122
125
129
£ 65



Contents  vii

7 Tying the System Together 133
Expanded Memory for the Am2903 133
MUX Requirements 133
Status Register 136
Am2904 136

Glossary 141

Index 145






_ Preface

This text has been compiled from the current and highly popular Cus-
tomer Education Seminar, ED2900A, ‘‘Introduction to the Am2900
Family,”” offered by Advanced Micro Devices. No attempt was made
to duplicate all of the material presented in the customer seminar. The
intent was instead to present a true ‘‘introduction’’ for the under-
graduate hardware or software student that could be covered in one
quarter or semester. The ED2900A seminar assumes that the attendee
either has a background in assembly level programming or has a back-
ground in SS/MSI design. This text also makes this assumption.

The flow is an orderly evolution of a CCU design, adding one
functional block at a time. The material is presented in a dual approach,
referring to both the hardware and the firmware, or the software im-
pact, as each feature is discussed.

The controllers are presented first, followed by the RALUSs and their
support chips. Interrupts are presented in two sections broken down by
the hardware evolution. The final chapter provides a ‘‘typical’’ config-
uration of an Am2900 state-machine architecture CPU.

Chapter 1 is an introduction to the reasons why microprogramming
should be selected as the means of implementing a control unit. This
chapter also presents a discussion of language interrelationships cover-

ix



x Bit-Slice Design

ing topics from the typing of the conventional programmer languages to
the functioning of the hardware through the microprogram. The basic
concept of what a control unit does is described using a primitive CCU
(computer control unit). The 2900 Family is also introduced and this
bipolar bit-slice family will be used throughout the text. The concepts,
however, apply to any microprogrammable system.

Chapter 2 begins the design evolution of a controller and introduces
timing considerations. The hardware-firmware duality of the design
decisions are stressed. In relation to the CCU used as an example, the
concept of a mapping PROM is introduced. Only PROMs are dis-
cussed, although DEMUX networks, gate arrays, and PLA (pro-
grammable logic array) and PLA-type logic units are often used to
perform the decode operation. Microprogram memory (control mem-
ory) is also presented. PROMs are referred to throughout the text
although ROMs, PROMs, EPROMs, WCS (writeable control storage),
and even parts of main memory may serve as the control memory. Only
single-level control memory is refered to in the text although some
designs exist which use two-level control stores (nanoprogramming).

Chapter 3 continues the evolution of the controller adding sub-
routines, nested subroutines, loops, and case statements to the tools
available to the microprogrammer. The concept of overlapping field
definitions in a microinstruction is introduced in relation to the
branch-address and counter-value fields. This is an elementary form of
variable formatting, the use of which should be minimized for clarity.
The controller evolution leads to the microprogrammable sequencers—
-he Am2909 and Am2911—and the next address control block, the
Am29811. (The letters A or B following a chip identification refers to
the latest version available and may vary over time.) The various ver-
sions are pin-compatible and differ usually in die size and speed.

The case statement introduces the Am29803A, a device which as-
sists in implementing up to a 16-way branch.

Microprogram memory implementation is briefly discussed, intro-
ducing the use of the Am27S27 registered PROM, dc and ac loading,
and the effects on sequencer timing of excessive capacitive load.

Chapter 4 continues the evolution of the CCU, introducing interrupt
handling (the interrupt controller is discussed later). The interrupts are
introduced here to demonstrate the OE; requirement of the next
address control block. The evolution finishes with a detailed discussion
of the Am2910 instructions. The instructions are discussed in their
conventional usage. A number of instruction set variations are possible
by tying control lines to different instruction lines (CCEN to I3, for
example) and by ignoring the PL, VECT, and MAP outputs of the
Am?2910 and driving the output enables of these devices from the pipe-



Preface xi

line register (microinstruction) itself. The Am2914 interrupt controller
is covered briefly.

Chapter 5 covers the RALUs—the Am2901 and Am2903—in a series
of evolving steps as were the microsequencers. Every conceivable
consideration cannot be discussed here, but enough is presented to
cover the architecture of the Am2901.

Chapter 6 covers some basic operations and presents their
microcodes to demonstrate microcode selection for these devices.
Two’s complement multiply is covered in some detail to highlight the
differences between the Am2901 and the Am2903.

Chapter 7 describes the *‘typical’’ CPU as suggested by Advanced
Micro Devices for the ‘‘typical™ user. It covers the Am29705 two-port
RAM and the Am2904 “*LSI Glue’’ multiplexer-register support chip.

An instructor’s manual of exercises and solutions has been prepared
and is available from Advanced Micro Devices.

Although the text is original, many of the drawings have appeared in
application notes and data sheets previously published by Advanced
Micro Devices and are reproduced with the permission of Advanced
Micro Devices. Those application notes written by the Bipolar Appli-
cations Department have served as the principal reference material.
Principal authors of these notes, to whom I am indebted for their assis-
tance and advice are:

John Mick, Engineering Manager, Systems and Applications, Digital
Bipolar Products.

the late Michael Economidis, Section Manager, Systems and
Applications, Bipolar Memory and Programmable Logic, Mr.
Economidis was an expert on the Am2914.

Jim Brick, Applications Engineer, Bipolar Microprocessors

Vernon Coleman, Senior Applications Engineer, Systems and
Applications, Bipolar Microprocessor Circuit Definition.

William Harmon, Manager, Systems and Applications, Bipolar
Microprocessing.






__Introduction

Over the years, there has been an evolution of the universal building
blocks used by logic circuit designers. In the mid-1960s, there were SSI
gates; NAND, NOR, EXOR, and NOT or INVERT. In the early 1970s,
MSI blocks, registers, decoders, multiplexers, and others made their
appearances. In the late 1970s, ALUs (arithmetic logic units) with on-
board scratchpad registers, interrupt controllers, microprogram se-
quencers, ROMs/PROMs, and other LSI devices up to and including a
complete one-chip microprocessor (control, ALU, and registers) be-
came readily available.

SSI (small scale integration) is defined here to include chips contain-
ing approximately 2-10 gates. MSI (medium scale integration) is used
for chips containing 20-100 gates. LSI (large scale integration) chips
contain 200-1000 gates, with the upper limit continually extending as
VLSI (very large scale integration) becomes a reality. The AmZ8000
CPU contains 17.5K gates; the M68,000 claims to contain 68,000 tran-
sistors.

Selection of the Implementation

Today, a designer is faced with three basic choices in implementation:
(1) SSI/MSI hardwired logic; (2) 9080A/8080A (8-bit) or AmZ8000-
In8086-M 68000 (16-bit) MOS fixed instruction set (FIS) microproces-

1



2  Bit-Slice Design

sor; or (3) microprogrammable bit-slice architecture with the 2900
Family or other similar family. There are a number of factors which
influence the decision as to which implementation is best for the appli-
cation.

Architecture

In terms of the design architecture, any FIS MOS microprocessor by
definition has its own predefined internal architecture, and this con-
strains the design options available. This fact is acceptable if the archi-
tecture provided by the selected MOS device satisfies the one desired
for the application. An SSI/MSI implementation allows the designer to
specify in complete, exact detail the architecture desired. With bit-slice
devices, some constraints are placed on the designer, but most of the
system architecture is left to user definition via the selected intercon-
nections and the microprogram.

Size

The real estate or board space (rack space, etc.) is often of concern
in a design because of space limitations. An FIS MOS microprocessor
may use 3-6 chips for a typical average control system, versus 100-500
chips for the same system implemented in SSI/MSI and 30-60 chips for
a compromise bit-slice design.

Word Length

The word length necessary for the system, whether a computer,
controller, signal processor, or whatever, is usually known in advance.
FIS MOS microprocessors can be used where their word length is
compatible with the design objective. MOS devices exist for 4-, 8-, and
16-bit data word systems. Using SSI/MSI, any word length may be
accommodated. Using bit-slice (the 2900 Family is expandable in
multiples of 4 bits), a wide variety of useful word size systems are
possible. When bit-slice does not conveniently match, SSI/MSI can be
used to ‘‘patch’’ the basic bit-slice design.

Instruction Set

The instruction set that the system under design is to support has a
major impact on the choice of implementation. The high dollar invest-
ment in software, which currently exceeds the hardware investments
with a ratio as high as 10 to 1, often results in the prime directive of
software compatibility: the new design must support the existing in-
struction set. FIS MOS microprocessors have a fixed instruction set. If
there is an MOS microprocessor whose instruction set supports the
design instruction set, then a microprocessor-based design can be



Introduction 3

used. The current FIS microprocessors support assembly level lan-
guages and have software to support BASIC, PL/1, FORTRAN, PAS-
CAL, and even COBOL. If the design has an unusual instruction set
requirement, it would require that a program written in the desired
instruction set be passed through an additional software process prior
to actual MOS device execution.

The two most widely known 16-bit devices are the In8086, with its
8080-based architecture and instruction set, and the AmZ8000, with a
general-register architecture and an instruction set based on the IBM
SYS/370 and the DEC PDP 11/45.

An SSI/MSI design can be customed tailored to support any desired
instruction set. A bit-slice design can be microprogrammed to support
any desired instruction set. The principal difference between these two
approaches is that one is done exclusively in hardware and the other
(bit-slice) is done in hardware and firmware.

Speed

Another design criterion or specification is the required speed of the
design. SSI/MSI using Schottky TTL and bit-slice (2900 Family) can
support systems with 125 ns cycle times. MOS microprocessors are
slower, with approximate cycle times of 1-2 us. The newer MOS de-
vices support 4—-5 MHz clock speeds. The newer bit-slice devices are
targeted for 100 ns microcycle systems. When instruction times are
given for an MOS microprocessor, the instruction is a machine level
instruction. To properly compare this with bit-slice or SSI/MSI,
macroinstruction execution times must be used where a macroinstruc-
tion is a machine instruction which the microprogram supports. Bit-
slice designs exist with effective macroinstruction times of 320 ns
(HEX-29) and 200 ns (SUPER-16) for register—register operations
(Chapters 8 and 9 of AMD’s Bit-Slice Microprocessor Design Series).

Tradeoffs

Design tradeoffs are summarized in Table 1-1. Basically, where high
speed, long word lengths, or critical instruction sets occur, MOS FIS
cannot be used. If design time—parts count-board space restrictions
also exist, or if production volume does not support the effort required
to do an SSI/MSI design (considered the most difficult to do correctly),
the bit-slice devices are the best choice. It should also be noted that a
microprogrammed bit-slice design is upgraded or changed, usually
through a change of PROM or a reload or patch of writable control
store, more readily than is a hardwired SSI/MSI design.

Bit slice devices are applied to three basic areas: machines with
long words, machines with special instruction sets, and high-speed



4 Bit-Slice Design

1Samon abues wnipapy 1saybiH 1509
pauuejdaid pasinbai ubisapal
auop Ajiseg 8q ueo ‘auop Ajises Inje oy dn sapelbdn
uoipod welboidosoiwu pajepino
Jolew si 81eM}Y0S BIA P82I04 uayo ‘snolpa] uoneuawWNI0Qg
ssaoo.d pie ssa00.d pie
swa)sAs yuswdojaasqg swajsAs yuswdogaag Inoyia bngaqg
A1081100
1se4 1se4 auop JI ‘mojs ‘buon auny ubisaq
s g-1 Su 00200} Su 002-00} paadg
wa|qoid e pawweiboidosow paim aq
paads Ji paulesjsuo) aq Aew pauisap Auy Kepy ‘pansap Auy 18S uonoNJlsu|
gL'8'y v ‘2 j0 sa|dniniy pansaq Auy yibus| piom
(je01dAy)
9-¢ 0S sdiyo 00S az1s |edishud
paubisapaid 8|qixajopnasd passaq Auy aInjoa)IyaIy
10ssa201dooIN $821A3(Q 39118119 ISW/ISS
SOW Sid
syoapes] ubisag -1 aiqeL



Introduction 5§

machines. The best examples are signal processors, with a low volume
per particular specification and which require high speed and a long
data word, and emulators such as the one for the SIGMA 9 (32-bit
word) and the one for the GE 400 (24-bit word), where software com-
patibility to the existing system at increased throughput is mandatory.
Variable instruction set minicomputers have also been developed using
bit-slice which allow custom-tailored instruction sets to be micropro-
grammed around one fixed hardware implementation.

Microprogramming

Microprogramming is to hardware design what structured program-
ming is to software design. If a bipolar (Schottky TTL) machine is to be
built, in bit-slice or in SSI/MSI, its control should be micropro-
grammed. First suggested by Wilkes as a methodical way of handling
the control unit of a system, it is now recognized as the best approach.
Why?

First, random sequential logic circuits are replaced by memory
(writable control store or ROM [read-only memory] or PROM [pro-
grammable ROM] or related devices). This results in or forces a more
structured organization on the design.

Second, when a unit is to be upgraded, a field engineer can replace
the appropriate PROM considerably easier than hardwiring and patch-
ing new components onto a crowded printed circuit board (PCB) with
all of the associated pitfalls of such activity.

Third, an initial design can be done such that several variations exist
simply by substituting one or more PROMs (changing the micropro-
gram), and enhanced versions can be preplanned such that version B is
constructed by simply adding a PROM or two to version A, simplifying
production. The basic units would contain sparsely populated PCBs
with upgrades provided for in the etch and connections. In these cases,
simply adding PROMs (and changing others as required) expands the
system. This technique is also commonly used for RAM memory
(read—write memory) expansion.

The microprogram, documented in the definition file and in the as-
sembly source file, serves as the principle documentation of the firm-
ware. This, coupled with the modularity of the design as enforced by
the use of microprogram control, provides a better opportunity for
clearer documentation than multipaged schematics can provide.

Last, diagnostic routines can be included in the PROMSs supplied
with the final system and can be called in by a field engineer through a
test panel and executed to aid debug. Some diagnostic routines could
be microprogrammed into the system such that they are routinely exe-
cuted in the normal running environment. For more severe testing, the



6 Bit-Slice Design

normal PROM memory could be swapped with a special test memory
simply by substituting PROMs.

Advantages of LSI

If bipolar has been chosen over MOS because of speed, LSI is prefer-
able to SSI/MSI for several reasons.

First, costs are reduced. LSI requires fewer parts and therefore
fewer boards and less rack space. There is less etch and fewer pin
connections with LSI as more and more of the connections are moved
inside the package.

Second, using LSI improves reliability. Approximately 80% of the
failures of working systems are caused by broken etch or by bent pins
and other broken external connections. Using SSI/MSI, a typical con-
troller might use 300 16-pin DIPs, for a total of 4800 pins. The same
controller done with LSI might use 30 40-pin DIPs, for a 1200 pin total;
the other connections having been moved inside of the package.

The 2900 Family is going to be introduced in this text. It is a
design rule that every design should use industry-standard parts. The
Am2900 family is considered to be the industry standard for bipolar
bit-slice devices. It is a microprogrammable family of LSI-level com-
plexity. Table 1-2 summarizes its advantages.

The Am2900 Family

The 2900 Family components include or will soon include (1) CPU-
ALU and scratchpad register units: Am2901, Am2903, and the new
Am29203; (2) microprogram sequencers and controllers: Am2909/
2911 and Am2910: (3) bipolar memory: various devices, including error
detection and correction controllers and support devices (Am2960 Se-
ries): (4) interrupt controller and support devices: Am2914, Am2913,
and Am2902; (5) bus I/O: Am2950 and support devices; (6) DMA sup-

Table 1-2 Microprogramming with LS|—Advantages

More structured organization

Field changes—may be as simple as replacing a PROM
Adaptions—may be as simple as replacing a PROM
Expansions —preplanned, may be as simple as adding a PROM
Better documentation

Hardware and firmware can be designed in parallel

LSI uses fewer parts

LS| has better reliability

Diagnostic PROM can aid debug, maintenance




Introduction 7

CONTROL

CPU MEMORY

PERIPHERALS

Figure 1-1. Simplex system block diagram.

port: Am2940 and Am2942; (7) timing support via microprogrammable
microcycles: Am2925; (8) main memory program control: Am2930 and
Am?2932: and (9) the new 16-bit Am29116.

Consider a simplex block diagram of a basic computer, shown in
Figure 1-1. The essential blocks of this diagram are (1) the CPU (central
processing unit), containing the ALU and scratchpad registers, the PC
(program counter), and MAR (memory address register); (2) the main
memory, where active programs and data are stored; (3) peripherals,
including backup memory, input, and output; and (4) the CCU (com-
puter control unit), which supervises everything else and contains the
control logic instruction decode and the PROMs. The CPU is where
data is processed; the CCU is where instructions are processed.

From this simple overview, progress to Figure 1-2 and the general-
ized computer architecture blocked out to show the various members
of the 2900 Family and their applications.

Language Interrelationships

Programming classes relate source code—written by the user in some
programming language—to object code—the machine level, machine-



8 Bit-Slice Design

Lylewy
vTiewy
oplewy
oclewy
pLiswy

ceeTwy
ozezwy
glLeTwy
oceTwy

ozezwy
6162WY
lzeTwy
vo6Twy
BOLTA
co6zwWy
1062wy

2)INVE
AHOW3W

*2amd3IyoJe 19Indwod pazijeIdudn Z-I a1n3ig

VLI/v91/¥S51/L0/90/5062WY
SHITTOHINOD 3DV4d3LNI OL 1S3N034H LdNYH3LNI

-~

£ &%

111111

1 MNvVE
AHOW3INW

SNng Ss3daav

43181038
SS34AAV AHOW3W
aNv
H3LNNOD WYHOOHd

sna viva

—

1INN
Q1901
OILIWHLIHY

SH31S1934
ONINHOM

1INN HOSS300Yd HIHLO
np 10HINOD HO
1dNHY3LNI 13NVd 10HINOD
£162WY
piezwy SNOILIONOD
1531
Yo
o
4
e}
2 ozezwy
r 10H1NOJ SS3HAQY Smummu«
S¥2019 WYHOOHJOHIIN NEousziiy
1X3N zz6ZWY
ol6zWY
sz6zWY
_
¥31S1934 NOILONHLSNIOHDIW
_
LINN TOHLNOD H3LNAWOD -
19z62WY
ocezwy
Y3193y Li6zWy
N
0z6zWY OILLONYLSNI Mmmwﬁ«
gL6zwy

6L6zwy



Introduction 9

executable instructions—via an assembler or compiler. A compiler is a
software program that translates a high-level (compiler level) language
program into object code. An assembler is a software program that
translates an assembly level source program into object code. There
are usually several compilers and one assembler per computer system.

Compilers translate at an average ratio of four to one (four machine
instructions per source instruction [FORTRAN 1IV]) or higher (six to
one for FORTRAN VI). Assemblers can be very nearly one to one,
with assembly statements being a mnemonic form of the bit pattern
machine instruction. In both cases, software is processed by software
to produce software, as shown in Figure 1-3.

High-Level Language

High-level languages are fairly free format, i.e., they have few col-
umnar placement restrictions on the coding form, use pseudo-English
mnemonics, and have prewritten functions. Their capabilities include
arrays, loops, branches, and subroutines, with the current emphasis on
structured programming tools, such as IF-THEN-ELSE, CASE, and
PROCEDURE statements.

A
BASIC BASIC COMPILER MACHINE-LEVEL
SOURCE CODE o= PROGRAM " INSTRUCTIONS
SOFTWARE SOFTWARE SOFTWARE
B
ASSEMBLY ASSEMBLER MACHINE-LEVEL
SOURCE CODE PROGRAM INSTRUCTIONS
SOFTWARE SOFTWARE SOFTWARE
C
MACHINE-LEVEL PHYSICAL CONTROL
—_— - -
INSTRUCTIONS MICROPROGRAM SIGNALS TO SYSTEM
SOFTWARE FIRMWARE HARDWARE

Figure 1-3. Language relationships. (A) High level. (B) Assembly level. (C) Micro
level.



10 Bit-Slice Design

Assembly Level Language

Assembly level languages have a more restricted format, require a
precise data definition, may involve the programmer in program
placement in memory, and use mnemonics for instructions but have
more of them. Most instructions or statements are restricted to one
operation—hence the approximate one to one translation ratio. The
assembly level programmer in general must know more about the
machine being used than the programmer who writes in FORTRAN or
BASIC.

Machine Level Language

Machine level languages are the closest to the system of the software
level languages. They are usually written using an encoding of instruc-
tions, data, and addresses in either octal or hexadecimal notation, are
more tedious to construct and debug, and are more restrictive in the
format required than the assembly level languages. They can require
more specific detail from the programmer, depending on the complex-
ity of the system being programmed.

Microprogramming

The machine level instructions are what the computer control unit
(the CCU) receives. In a microprogrammed machine, each machine
level instruction (referred to as a macroinstruction) is decoded and a
microroutine is addressed which, as it executes, sends the required
physical control signals in their proper sequence to the rest of the
system. This is where the software instruction via a firmware micro-
program is converted into hardware activity.

Microprogram Storage

The various software programs will vary from hour to hour, or more
often, and their data will vary; therefore read—write or RAM memory is
required as their storage area. The microprogram, however, will usu-
ally remain the same. There are a few machines—the Burroughs 1700,
for example—that load a different microprogram for each of several
application languages.

Where one microprogram is to be used by the system, ROMs (high
production) or PROMs (lower production, prototype) are used for the
microprogram memory. Such systems are called microprogrammed
systems.

When a microprogram may be replaced by another, for example, to
emulate another machine or to do a diagnostic run, then either a sepa-
rate read—write memory, called a writable control store (WCS), or part
of the system main memory is used as the microprogram memory with
minifloppies, tape cartridges, or an area of main memory as the aux-
iliary storage for the microprograms. This alterability is attractive for



Introduction 11

special application systems such as experimentation control. Writable
control storage is also useful for prototype systems and is present in
development systems for flexibility. Systems with alterable micropro-
grams are called microprogrammable systems.

Throughout the remainder of the text, the microprogram control
memory will be assumed to be a PROM memory for the sake of sim-
plicity.

Format

Each machine level instruction is in the form of an op code and
operands. There may be several different formats for the instructions in
any one machine. These instructions are decoded by the control unit,
and the decoding produces an address which is used to access the
microprogram memory.

The microroutine for the individual machine or macroinstruction is
called into execution and may be one or more microinstructions in
length. (A microinstruction will be assumed to execute in one micro-
cycle; such a microinstruction is also called a microstep.) Each micro-
instruction contains information blocked out in fields, where each
microinstruction field directs or controls one or more specific hardware
elements in the system. Every time that a particular machine instruc-
tion occurs the same microroutine is executed. The particular sequenc-
ing of the available microroutines constitutes the execution of a spe-
cific program.

Machine level language is very close to the hardware and has a very
constrained format. It uses no mnemonics and requires that everything
be specified by the programmer, including program address and data
addresses. A sample machine instruction format is shown in Figure
1-4A. More than one machine instruction format usually exists for a
given system.

A MACHINE LEVEL INSTRUCTION
DESTINATION | SOURCE
OP CODE b ue
15 8l7 al3 0

B

MICROPROGRAM INSTRUCTION

BRANCH | Am2910 [ cc | 1R | Am2903 | Am2903 | Am2903 | Am2903 | sTATUS | sHiFT | .o
ADDRESS | INST | Mux | o | AaB |Source| aLu DEST | LOAD | Mux

= 32 TO 128 BITS _!

Figure 1-4. Sample formats. (A) Sample machine level instruction (register
addressing). (B) Sample microprogram instruction (Am2900 family). (Addr., address:
CC, condition code test: Dest., destination: Inst., instruction: n, unknown number of
bits: R1 and R2 are operands.)



12 Bit-Slice Design

Microprogramming is done in the format or formats designed by the
programmer. Once chosen, it (or they) becomes fixed. Each field con-
trols a specific hardware unit or units, and the possible bit patterns for
each field are determined by the signals required by the hardware units
controlled. Simple, short microprograms can be recorded in bit string
fashion and prototype PROMs created using manually operated PROM
burners. A sample microinstruction format is shown in Figure 1-4B.
More than one microinstruction format may exist for a given micro-
program.

Development Systems

Longer microprograms (> 32 microwords in length or with micro-
words > 16 bits wide) are better handled with development systems.
These systems allow each field to be defined with mnemonics, which is
a documentation aide. (Labels such as ON, OFF mean more to a
human than 0, 1.) Once the fields are defined, the microcode (micro-
program, microroutines, microinstructions) can be written in mne-
monics, more or less as a pseudoassembly language, providing human-
readable documentation in the process. The development system
then may be used to assemble the microprogram thus written and
to create the input to an automated PROM burner.

The development systems allow prototype hardware to be con-
nected to them, and with the prototype microprogram loaded into the
writable control store of the development system the development sys-
tem can be used to debug hardware and firmware in parallel. The WCS
is used to replace the microprogram control store of the prototype
system. For the 2900 Family, the development system is Advanced
Micro Computer’s AmSYS 29™,

Microprogramming is the programming level that is closest to the
hardware, and the microprogrammer must know everything about each
of the pieces of hardware which are to be controlled. The tradeoff here
is between the detail level of the programming and the power and the
control of the hardware that is possible. The actual number of micro-
routines required is a function of the number of machine level instruc-
tions that the system is to recognize. For an average computer control
system, there would be about four microinstructions ‘per machine in-
struction, with the minimum being 1 and the maximum 16. This varies
dramatically with the application. Figure 1-5 gives the relative relation-
ships between the ease of programming and the level of control pro-
vided by each of the language levels.

Controller Design

A computer control unit (CCU) will be used for illustration throughout
the text; the design approach, however, is applicable to any controller.



Introduction 13

PSEUDO-ASSEMBLY

HIGH-LEVEL ASSEMBLY MACHINE
LANGUAGE LEVEL LEVEL MICROCODE
DECR INCR

Figure 1-5. Language interrelationships: Requires (1) detailed knowledge of
hardware; (2) time to write programs; (3) power and control of hardware.

A Simple Computer

The simplex computer of Figure 1-1 is further reduced as shown in
Figure 1-6, which shows (1) a CCU, (2) the ALU and scratchpad reg-
isters, (3) the PC (program counter), and (4) MAR (memory address
register).

SCRATCHPAD
REGISTERS
ccu
ALU
PC AND MAR
CONTROL DATA ADDRESS

Figure 1-6. CPU and control block diagram.



14  Bit-Slice Design

OP CODE

DATA IN >————

A 8 FUNCTION, IR
CARRY

Y

ALU / “n

LOAD, EN ccu

ACC £
“1-2

REGISTER ‘/

Figure 1-7. Simple sequential system (simple computer/SIMCOM).

DATA OUT

The MAR is the output to the address bus for peripheral and mem-
ory addressing. The CCU controls all devices shown and outputs to
external devices via the control bus. The ALU receives and outputs
data via the data bus. Addresses may be loaded into the PC via the data
bus. This is a very elementary system.

This system is reduced further in Figure 1-7, where the CCU is
shown to control the ALU and the ACC (accumulator, a register) with
its other control functions ignored for now. Here the data may be input
only via port A of the ALU; port B is loaded via the ACC register; and
data is output only from the ACC. The CCU receives an instruction in
the form of an op code somehow (ignore how for the moment). Given
the op code as input, the CCU must proceed to generate (1) the appro-
priate function control signals (three to six bits would be typical); (2)
the ACC load-enable controls (two bits); and (3) the carry-in (C,,) bit
value. For this elementary unit the microword format might appear as
shown in Figure 1-8.

A simple ALU could have three control lines and perform addition,
subtraction, and the logical OR, AND, EXOR, and similar functions,
up to a total of eight functions. The carry-in bit allows the three arith-
metic functions A + B, A — B,and B — Atobe variedto A + B + 1,
A —-B -1, and B — A — 1. This simple ALU would support the
machine level and assembly level instructions ADD, SUB, OR, AND,
and EXOR, as shown in Figure 1-9.



Introduction 15

MICROWORD FORMAT

ALU FUNCTION, OP CODE
CARRY ACC LOAD LOAD A ADDRESS | B ADDRESS oo
4-6 1 1 1-4 1-4

Figure 1-8. Control required from CCU.

Constructing the CCU

Now that what the CCU must do—namely, translate the op code
received into ALU-ACC controls—is defined, how is the CCU con-
structed?

Hardwired Design

As stated before, the CCU can be built from the traditional sequen-
tial circuit network, an SSI/MSI hardwired unit. The advantages and
justifications of this approach are as follows:

It is a custom design.

It may be a more minimal (irredundant, testable) solution.

It is justified if the design is to remain rigid or fixed.

It may be the highest-speed implementation.

It is justified if a high volume is to be produced before redesign.

CONTROL LINES ALU FUNCTION
S2 Si S Cin=0 Cin=1
0O 0 o A+B A+B+1
0o 0 1 B-A-1 B-A
0 0 A-B-1 A-B
0 1 1 AVB
1 0O o0 AAB
1 0 1 AAB
1 1 0 ANB
1 1 1 A¥B

Figure 1-9. ALU functions.



16 Bit-Slice Design

The disadvantages are as follows:

There is a lengthy design time.

Documentation is difficult to create and to maintain due to volume.

Minimization to remove redundancy is difficult, if done at all.

If minimization is not done, redundancy will interfere with
testability.

Design changes require a partial or total redesign.

Debug is difficult, with races or hazards.

Board space is high.

Pin count is high (external connections).

Modularity and therefore structure is usually not present.

A hardwired control would consist of and instruction register (IR),
decode logic, a timing generator network, and a complex sequential-
combinational network. Output from the network would be the control
signals for the rest of the system, as shown in Figure 1-10.

Microprogrammed Design

Assuming that the required speed has negated using MOS FIS
microprocessors, the control can be done with microprogramming.

The simplest microprogrammed computer control unit would re-
quire an instruction register, decode logic, a clock source, and a ROM-
or PROM-based control memory. Output from the control memory
would include the control signals for the rest of the system. If a control
unit other than a CCU is being developed, the unit could be as simple
as a register, a clock source, and a PROM-based control memory, as
presented in Figure 1-11.

"~ The advantages of a microprogrammed approach to the construction

of a control unit are as follows:

It is custom design at a higher level.

Microprogramming allows a systematic approach to the design.

The result is a compact, modular physical unit (compared to
SSI/MSI).

The result is a flexible design (the unit can be microprogrammed to
perform different control functions and different variations of
those functions, in most cases without affecting the physical
hardware).

If a proper structured programming approach is used to create the
microprogram, there will be better documentation of system
operation than is possible with a hardware-only design.

Diagnostic routines could be microprogrammed into the control
memory itself or into special PROMs for use in troubleshooting
the system.

There is a shorter design time compared to SSI/MSI.



Introduction 17

FROM SYSTEM

l

INSTRUCTION REGISTER

DECODE LOGIC

L

COMPLEX
TIMING > SEQUENTIAL/
GENERATOR COMBINATIONAL
NETWORK

~  TTTTTT

TIMING CONTROL
CONTROLS SIGNALS
TO SYSTEM
‘MICROWORD"

Figure 1-10. Typical hardwired (SSUYMSI) CCU.

Design aids via development systems exist to support the above.

For a hardwired design, the design time goes up as people are added to
a project above some critical number, such as two or three people.
Microprogrammed design can use groups operating in parallel, since
the microcode and hardware development can generally proceed in
parallel.

Cost Effectiveness

The trend over time is for microprogramming to become the cost-ef-
fective method of control unit design at lower and lower levels of
design complexity. The PDP-11 series of computers is a good example



18 Bit-Slice Design

LOAD NEXT ADDRESS
ON RISING EDGE OF
CLOCK SIGNAL

I L

REGISTER |~4——————— CLOCK

MICROMEMORY
ADDRESS

PROM

NEXT
ADDRESS

TIMING CONTROL
SIGNALS TO SYSTEM

Figure 1-11. Simplest control unit implementation. (Clock signal refers to the rising
edge.)

of this trend. The PDP-11/20 was designed when hardwired logic was
more cost effective for the level of ‘‘functionality’’ of the PDP-11; the
PDP-11/60 was designed when microprogramming had become the
more cost effective choice. The PDP-11/60 has more control functions
implemented via microprogramming than does the PDP-11/20, although
the ‘‘functionality’’ (design complexity) of the systems are considered
to be approximately equal.



Simple
__Controller

The very simplest microprogrammed controller is constructed from a
PROM (assume that this means ROM or PROM from now on) and a
register, as shown in Figure 2-1. The load enable on the register is
connected to the clock signal. The register outputs an address to the
PROM memory, and this address is used to fetch the next microinstruc-
tion that is to be executed. No next-address logic is included or re-
quired. After a time delay equal to that needed for stabilizing the reg-
ister outputs plus the read access time of the memory, the memory
outputs both the control signals to the rest of the system and the next
address to be loaded into the register. The PROM memory is also
referred to as the control memory. The output from the memory must
be stable before the next clock pulse (C,):

_Q,, = [ read access + 1 register + 1 setup time
of memory C,, to output for register

The size of the memory is 2” words, with each word M bits long.
The M bits are formed from the C control bits plus the » address bits
required to specifiy the next instruction:

M=C +n
19



20 Bit-Slice Design

*3uiyoew [enuanbas e jo uonejuswddwy 1saidwis Y], °[-Z dn3diy

sS3dvaayv

d31S 3NO HOd STVNDIS
TOHLNOD IHVMAHVH _

d3.lS 1X3N
$103713S

|

99
1Nd1NO OL

——————e

dn-13s;

LN
ZN
&N
WX 2 OO GJGWV "
(woy) o
AHOWIW % Q\ * | ) 4311934
WVYHOOHdOHIIW (0 Yy sS3Haav

QV €

$$300Vv-av3Y, \\\ ¢

& SAHOM 2

SNOILONYLSNIOHDIIN SLIE W

AJ20710




Simple Controller 21

word width equals the number of control bits plus the number of next-
address bits.

The programmer is free to place microinstructions anywhere in any
order as long as each one references the next executable address. This
system will run from clock power up until clock power down. Assume
on power up that the register is cleared and the first address executed is
address 0. Since no next address logic is provided, only one sequence
is possible. This controller is suitable for process control (repetitive
looping of a sequence).

Sequential Execution

A reduction in required PROM memory is possible by removing the
requirement of the next-address field. This is reasonable because the
microprogram can be loaded into PROM in its executed order as one
long sequential routine, as diagrammed in Figure 2-2. In this case the
next microinstruction address is always equal to the current microin-
struction address plus 1.

The register is replaced by a counter, incremented by the clock and
reset to zero on startup. The clock pulse width is determined by

gp read access + I counter C,, 1o output

[ CLOCK

RESET 5 COUNTER |

1 RESET
n
2 A" MICROINSTRUCTION
ADDRESS
3
4 TIME DELAY = ACCESS TIME OF
oise o1 MEMORY USED
MICROPROGRAM
SEQUENTIAL MEMORY
FLOW

L

CONTROL SIGNALS
TO SYSTEM

Figure 2-2. Sequential control.



22 Bit-Slice Design

A
CLOCK
CONTROL SIGNAL A 1 (] () 0 ()} 1 1
CONTROL SIGNAL B 1 1 0 0 () 0 0
CONTROL SIGNAL C 1 1 1 1 1 (i} 0
CONTROL SIGNAL D 0 0 0 1 1 1 1
0 1 2 3 a4 5 6
TIME
—_—
B MICROPROGRAM
FLOW
MICROPROGRAM .
MICROPROGRAM MEMORY OUTPUTS
MEMORY ADDRESS | A B c D 1
0 1 1 1 0 2
1 0 1 1 ()} 3
2 0 0 1 ()} "
3 0 ()} 1 1
a o | o] 1| 1 s
5 1 0 0 1 6
6 1 0 0 1

Figure 2-3. Sample sequential microcode. (A) Desired control. Assume that this
is the desired control for some system. (B) Microcode and flow. This is then the
microcode for sequential execution.

which is approximately the same as before, since

4 read access >> 1C, 10 output

To derive the control portion of the microcode for either of the two
control units described so far, assume a timing diagram exists. By
digitizing the timing signals using the clock step and assuming all
changes correspond to the rising edge of the clock, the microprogram



Simple Controller 23

SOURCE
A
LOAD COUNTER |=—————— cLock
n//
LOAD = 1 — PROM ‘
COUNT = 0
- —
LD
St mIsC
Al, CONTROL SIGNALS
B
MICROWORD FORMAT
LOAD ALU
ACC OP CODE
CONTROL | FUNCTION. | | oAc™sr LOAD A ADDRESS | 8 ADDRESS cee
BIT Cin
1 4-6 2 1 1-4 1-4

Figure 2-4. Multiple sequence controller. (A) Controller. (B) Microword format.
(Load cont., load control)

control field is simply the binary word at each time slice. The proce-
dure is shown in Figure 2-3.

Multiple Sequences

The controller may be made to execute several sequences by adding
one control bit to the word width, the load control bit. This bit connects
to the load control line of the loadable counter, as shown in Figure 2-4.



24  Bit-Slice Design

The data inputs to the counter receive the start address. The new start
address is gated into the counter when the load control bit equals 1.
The counter operates as a counter as long as the load control bit equals
0. Each microroutine or microinstruction sequence would contain a 1
in the load control field in the last microinstruction of the sequence
only and a 0 in that field for all other microinstructions.

The size of the PROM memory is determined by the total number of
microinstructions it must store. Since PROM memories come only in
certain sizes, a ‘‘ballpark’’ number is sufficient for selection. The
smallest sizes are 32 by 8 (nonregistered) and 512 by 18 (registered
PROM). The number of address bits required and the size of the coun-
ter are determined by the amount of the memory that is used or that is
anticipated to be used in later enhancements.

Start Addresses
If the controller is a CCU, the start address of each microroutine is
derived from the current machine instruction. At the minimum, an
instruction register must be added between the data bus and the coun-
ter data inputs to store this instruction. A load control bit must be
added to the microword for the instruction register, which must load
prior to the counter load (see Figure 2-5). This scheme requires that the
op code equal the high-order bits of the start address, with the low-
order bits tied to logical 0. This is necessary to allow the starting
addresses to be separated by the minimum number of addresses re-
quired by the longest microroutine.

Assume that no machine instruction is anticipated to take more than
16 microinstructions to execute. Also, assume a 12-bit address and a
4K PROM memory. The op code must then be no more than 8 bits in
length, and the lower 4 bits of the counter data inputs must be tied low.
Sixteen steps are allowed per microroutine, and up to 256 different
start addresses are possible with this configuration.

The clock pulse required by the controller has not changed. Re-
member also that the width of the memory is not a function of its depth.

This scheme is adequate if (1) there is sufficient room in the PROM
memory, (2) spare locations are acceptable, and (3) no microroutine
exceeds 16 steps. If a microroutine exceeds 16 steps, it would overrun
a start address, reducing the number of op codes possible; this may still
be acceptable. Short routines leave discontinuous unused areas scat-
tered throughout the PROM memory; this may also be acceptable.

Mapping PROM

If fragmented space and reduced available op codes are not acceptable,
one solution is to add a mapping PROM between the instruction reg-
ister and the counter. The op code is the address into the map, which in



Simple Controller 25

MACHINE
INSTRUCTION

INSTRUCTION REGISTER

LOAD
OP CODE OTHER

COUNTER ~a———— CLOCK

_~ n ADDRESS

LOAD = 1 MICROPROGRAM MEMORY

COUNT =0

LOAD

CONTROL BIT OThER

T

HARDWARE CONTROL
SIGNALS

Figure 2-5. Basic CCU. (x, number of bits in op code: n, number of bits in counter
address)

turn outputs the full start address of the microroutine to the counter, as
shown in Figure 2-6. Start addresses may now be assigned at any
location in the PROM memory rather than being equidistant from one
another, and routines may be compacted to delete excessive frag-
mented space. (It is a good idea to allow some unused areas within the
PROM to allow for enhancement changes.) The final placement of the
routines in the production PROMs should be done after the debug cycle
to minimize mapping PROM changes. This is where a development
system is used to advantage.

Another feature may be added once a mapping PROM approach is
chosen. The mapping PROM may be made larger than required for
normal running and contain address lines driven by switches to allow a



26 Bit-Slice Design

OP CODE MICROPROGRAM MEMORY
4 BITS
START ADDRESS
16 WORDS. MAPPING
8 BITS WIDE PROM START ADDRESS

START ADDRESS =

VARIABLE
LENGTH

START ADDRESS

START ADDRESSES
GATED THRU COUNTER

256 WORDS, 32-128 BITS WIDE
ANY 16 OF THE 256
LOCATIONS CAN BE USED
AS THE START ADDRESS

ROM PROM

<

CONTROL
SIGNALS

Figure 2—-6. Mapping PROM.

Privileged State, where all op codes are valid, and a Normal State,
where certain op codes are invalid, ‘‘trapping out’’ to an error trap
address in the control memory. The control memory would not neces-
sarily be larger than before.

Also, the mapping PROM and the PROM memory may be set up for
future expansion and expansion address lines merely left disconnected
or the PROMs left unused in the added areas. (The usual approach is to
leave the PROM chips off the board.) It is easier to provide for expan-
sion now than to do a redesign later.

The CCU is shown in Figure 2-7. A fairly reasonable control system
has been constructed which is acceptable if all of the microroutines are
simple sequences.

Unconditional Branch

Often routines may start differently but end with the same steps. Also,
once starting addresses are mapped, it might be found that a routine
- needs to be extended. For these and other cases, the existence of a GO
TO or unconditional branch next-address control is desirable. The in-



Simple Controller 27

MACHINE
INSTRUCTION

INSTRUCTION REGISTER

LOAD

OP CODE OTHER

PRIVILEGED MAPPING
STATE SELECT 7 PROM

L n

|

LOAD

COUNTER [~e————— CLOCK

|- n ADDRESS

MICROPROGRAM
MEMORY

LOAD

CONTROL BIT QUIER

'#CONTROL
SIGNALS

Figure 2-7. CCU with mapping PROM.

struction flow is shown in Figure 2-8. This instruction causes the coun-
ter to be loaded with the desired next address, which is not in sequence
with the current address. This is not a start address; therefore the map
is not involved. Instead, the microword width must be expanded as
shown in Figure 2-9 to contain a branch address field, up to n bits wide,
and a next-address-select field. The map and the branch address lines
would be input to a 1-of-2 MUX network, n bits wide, with the MUX
select operated by the address selection field of the microword. The
MUX outputs are the inputs to the counter, as shown in Figure 2-10.
A sample piece of microcode, shown in Figure 2-11, highlights the
load control to the counter, the address MUX select, and the branch
address field. Assume that the program start address is at address 50.
Execution is then seen to be sequential until address 53, which loads
the counter (LDCTL = 1) with a branch address (ADR MUX = 0)
supplied at address 53 (BR ADR = 90). The next microinstruction exe-
cuted is at address 90. Address 90 causes a branch back to address 13.



28 Bit-Slice Design

Figure 2-8. Flow

49 diagram of unconditional
jump—the GO TO
50 statement. (JMP, jump)
51
52
JMP 53 (6 9 90

Address 14 causes the counter to be loaded (LDCTL = 1) with a new
start address (ADR MUX = 1). This is the last step in the routine that
began at address 50.

The width of the branch address field, B, could be less than n,
restricting the allowable range of the branch (for example, by leaving
the n — B high-order bits unchanged). This complicates the task for the
microprogrammer and should be avoided by beginning designers. Good
programming practices will require that the various parts of the
routines be kept in a relatively compact area, if possible, without
artificial enforcement.

Conditional Branch

It is sometimes desirable to terminate a microroutine in one of several
different ways depending on one or more conditions. The conditions
tested could be the various status bit outputs of the ALU based on the
result of an operation, such as (1) Z =1if ACC=0, 2) § =1 if

MICROWORD FORMAT

toap |, MEXT | BRancH | ALy acc_ |opcooe| A 8 ..
CONTROL SELECT ADDRESS | FUNCTION| LOAD. EN LOAD ADDRESS | ADDRESS
1 1 n 4-6 2 1 1-4 1-4

Figure 2-9. Expanded microword. Width of microword increases with increased
flexibility and control.



Simple Controller 29

LOAD —= INSTRUCTION REGISTER

BRANCH ADDRESS

ADDRESS SELECT 0 1

LOAD CONTROL

COUNTER |—a————— CLOCK

_} n ADDRESS

MICROPROGRAM MEMORY

LOAD ADDRESS BRANCH
CONTROL SELECT ADDRESS OTHER
A"
CONTROL
SIGNALS

Figure 2-10. CCU with branch capability.

ACC < 0, (3) C,, = 1if|ACC| > range, (4) OVR (overflow) = 1 if
error, or (5) on the result of a compare operation. Only one condition is
testable at a time. Hardware could be used to combine a number of
conditions and to supply one test bit if that combination is expected to
occur frequently. A program slow diagram for a conditional branch is
shown in Figure 2-12.

The ability to test a condition and to branch if the condition is true is
provided by adding a MUX at the counter load control. The load con-
trol field in the microword is changed to a branch condition select,
which selects (1) ground (count; no branch), (2) condition 1 or condi-
tion 2 (load branch address into counter if true), or (3) Vcc (uncondi-
tional branch, load counter). The CCU is shown in Figure 2-13, with its
microword format shown in Figure 12-14.

A sample piece of microcode is shown in Figure 2-15 that has both
unconditional and conditional branches. As with most programming



30 Bit-Slice Design

ADDRESS MUX

LOAD CONTROL ﬁ —— BRANCH ADDRESS
PROM
ADDRESS K
13| o | x X
‘ START
14 1 1 X NEXT OP
[ ]
[ ]
START: N
so] o | x| x
s1] o | x| x
SEQUENTIAL
EXECUTION
s2| o | x | x
534 1 o | 90
FORWARD :

BRANCH \ :

907 o X X

o1l o | x | x \\___ BACKWARD

BRANCH

92 1 0 13

o " THESE BITS ARE ""DON'T CARE"

FOR THIS OP CODE

FOR THIS OP CODE THEY ARE
AN ADDRESS

Figure 2-11. Microcode, demonstrating the use of jumps. (X bits are **don’t care’" for
this op code: numbered bits are addresses for this op code.)

languages, if a conditional test fails, execution continues sequentially,
as shown in statements at addresses 30 and 31. The branch condition
select field is 2 bits wide in this example. A wider field would allow a
larger MUX and therefore would allow more conditions to be tested.

Timing Considerations

The basic controller evolved so far can be a primitive CCU. Figure 2-16
shows the connections between this CCU and the ALU portions of the

simple system described earlier.
The clock pulse width, called the microcycle, is determined from

C = Tcounlcr clock to output + TPROM read access + TALU execution

-_p

(For the 2900 family a microcycle is measured from one rising edge



50

51

52

CONDITION TRUE

Figure 2-12.

Simple Controller 31

Conditional

branch flow diagram.
“IF-THEN-ELSE™ — the
conditional branch. (CJP,
conditional jump)

CJP 53 85
54 86
55 87
56 88
CONDITION
FALSE
LOAD ———= INSTRUCTION REGISTER
SELECT
MODE g MAR
) 1
s MUX
Veg —=| 3
CONDITION -—2—— 2 LD
: MUX COUNTER —— CLOCK
CONDITION ———e] 1
GROUND ——=| 0 40
s
MICROPROGRAM MEMORY
CONDITION
SELECT e
A H
ADDRESS BRANCH
CONDITION OTHER
SELECT SELECT ADDRESS
P
CONTROL
SIGNALS

Figure 2-13. CCU with conditional branch capability.



32 Bit-Slice Design

A TESTABLE CONDITIONS
GROUND C, C, Vcc
l | ’ I s, So | RESULT
BRANCH s Dp D, D, D 0 0 | INCREMENT COUNTER
W ol i 0 1 | BRANCH IF C, = TRUE
SELECT S 1 0 | BRANCH IF C, = TRUE
MUX 1 1 | LOAD COUNTER
l LOAD
CONTROL

MICROWORD FORMAT

BRANCH NEXT
CONDITION| ADDRESS
SELECT SELECT

oo b

2 1 n 4-6 2 1 1-4 1-4

BRANCH ALU ACC__ | OP CODE A 8
ADDRESS | FUNCTION | LOAD, EN LOAD ADDRESS | ADDRESS

Figure 2—-14. Microword format for conditional branch. (A) Detail of load control
MUX. (B) Detail of microword format.

of the clock to the next. All register write operations occur on the rising
edge of the clock.)

Sequential Timing

A timing diagram is given in Figure 2-17 showing a series of sequen-
tial program steps (refer to the CCU-ALU of Figure 2-16). At each
rising edge of the clock, the counter increments and settles, and the
counter outputs an address to the PROM, whose access time is greater
than the counter settling time. As soon as the outputs are stable at the
PROM output, execution begins in the ALU. (For now, assume that
the operands are available.) On the next rising edge of the clock, the
ALU result is gated into the accumulator and the status signals which
are being input to the condition MUX are assumed to be stable. (They
would normally be gated into a status register on the same clock edge
that loads the accumulator.)

Branching
Now assume that a conditional branch is to be executed. On the

rising edge of the clock, the status signals from the previous instruction
and the result of that instruction are available. Concurrently, the coun-
ter has been incremented (Figure 2-18). (Note: this counter is a syn-
chronous loading counter.) The microinstruction / + 1 has been
fetched, and this is the conditional branch.

When the outputs are available from the PROM memory, the control



Simple Controller 33

signals are sent to the counter to cause it to load the branch address if
the tested condition is true. The MUX select bits, and the condition
inputs propagate through the MUX prior to the next rising edge of the
clock. No ALU activity occurs.

On the next rising edge of the clock, the branch address enters the
counter and the address is input to the PROM. Execution proceeds as
before.

There is no difference in the instruction cycle of a branch and a
nonbranch instruction in this system. However, while the memory is
being accessed, the ALU must remain idle, and while the ALU exe-
cutes, the memory must remain idle. The minimum total width of the
microcycle, C,, is the sum of the worst case fetch and execute times.

Pipelining

To improve speed, it is desirable to allow overlap of the ALU and
memory fetch processes. This is possible by adding a register at the
PROM output, called a pipeline register. The counter is acting as

BRANCH ADDRESS
CONDITION MUX BRANCH

SELECT ADDRESS
PROM
ADDRESS:
START: 13 [} X X

14 3 [} 30

UNCONDITIONAL

,/_ BRANCH

TEST
STATEMENTS

CONDITIONAL | 30 2 0| ss
TEST CONDITION 2 — FAIL

TEST CONDITION 1 — FAIL
32 0 X X

a3 0 X X

34 1 0 106 TEST CONDITION 1 - TRUE

CONDITIONAL BRANCH
106 0 X X :
107 3 1 X START NEXT OP

\— S, Sp CHOOSE CONDITION TO BE TESTED, IF ANY.

Figure 2-15. Microcode, demonstrating conditional jumps.



Bit-Slice Design

34

STIVYNOIS
90HLNOD
A A
ss3uaav | Nowo3T3S )
3k HONvHE | ss3uaav aNeo
AHOW3W

WYHOO0OHdOHIIN

0010 —=

H3LNNOD avol

H3INNOD aVO1 \

SNONOHHIONAS

‘wIsAs Aivjuowd|g ‘91— dandiy

dV

H31S193H
NOILONYLSNI

—_— 1n0 viva
NOILONNZ NIV
N3
20V
avol %2012
%2010
aNNoHo
e
\ nv
L NOILIONOD H31SI93H \
SNLVLS
Z NOILIONOD \ g v
e UU>
NI viva
noo nv




Simple Controller 35
l¢——— u-CYCLE ———
CLOCK ] J | . | |
COUNTER u-INST i ADR p-INST i+ 1 ADR p-INST i+ 2 ADR
MEMORY FETCH —_— FETCH B FETCH —_
u-INST i u-INST i+ 1 u-INST i+ 2
ALU — EXECUTE —— EXECUTE —— EXECUTE
p-INST i p-INST i + 1 u-INST i+ 2
ACCUMULATOR RESULT OF RESULT OF RESULT OF
u-INST i-1 u-INST i u-INST i+ 1
Figure 2-17. Microcycle timing for the system of Figure 2-16 (no branch).

another pipeline register, holding the address that the memory is fetch-
ing. The PROM pipeline will hold the current microinstruction under
execution. This will allow the counter to move one count ahead and
therefore will allow a memory fetch of the i + Ist microinstruction to
be overlapped with the execution of the ith microinstruction. The con-
figuration is shown in Figure 2-19.

Figure 2-20 shows the timing diagram for sequential execution of this
system. When the counter contains the address of microinstruction 7,
the memory is fetching microinstruction /. The pipeline register con-

~— 4-CYCLE —+]
CLOCK [ | | | | I | | |
COUNTER u-INST i ADR u-INST i+ 1 ADR| u-INST b ADR LI
MEMORY FETCH == FETCH e FETCH — . e .
p-INST i u-INST i+ 1 u-INST b
ALU — EXECUTE | — (COND BRN| — EXECUTE ..
u-INST i N INSTR) u-INST b
ACCUMULATOR LI RESULT OF — RESULT OF
u-INST i u-INST b
Figure 2-18. Microcycle timing for the system of Figure 2—16 (branch). Conditional

branch on result of previous microinstruction.



Bit-Slice Design

36

(*19151821 **80y) pappe Jas13a1 surppdid € yum woalsAs o dwig  "61—7 24ndiy

1NO viva
N3 %2012
‘avol
%2010
NOILIONNS
43151934
SNLVLS

STYNDIS
JOUINOD
il H31S1938 INN3dId
%2012
sSs3daav 12373S
N HONVH8 | SS3yaav anNga
AHOWIW
WvHO0HdOHIIW
ul S ol=—o
2 aNNOHo
!
o= H31NNOD AVO1 I NOILIONOD
%2010 e
¢ NOILIONOD
£ I‘IUU>
XNW s
3 0

dVW

¥31S1934 NOILONHLSNI

ndo

NI viva

nvy



_.I

clock  _ | . LJ | L I
COUNTER u-INST i u-INST i+ 1| p-INSTi+2 | p-INSTi+3 | u-INSTi+4
ADR ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
p-INST i u-INSTi+1 [ p-INSTi+2 | p-INSTi+3 | u-INSTi+4

PIPELINE REG | pu-INSTi—1 p-INST i u-INST i+ 1 | p-INSTi+2 | u-INSTi+3

ALU EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE
p-INST i— 1| u-INSTi u-INST i+ 1| p-INSTi+2 | p-INSTi+3

N

ACCUMULATOR| RESULT OF | RESULT OF | RESULT OF | RESULT OF | RESULT OF

u-INSTi—2 | p-INSTi— 1| u-INSTi p-INSTi+1 | u-INSTi+2

SHORTER
u-CYCLE

|._

Simple Controller

37

Figure 2-20. Timing for the pipeline system, no branch.

tains microinstruction i — 1, which is under execution. If the microin-
struction uses the ALU, the ALU is executing the commands of micro-
instruction i — 1 at this time. The accumulator contains the result of
the execution of microinstruction i — 2; hence the reference to a two-
level pipeline.

On the rising edge of the next clock, the counter increments and the
memory proceeds to fetch microinstruction i + 1. The pipeline loads
with the outputs of the previous memory fetch, microinstruction i, and
execution proceeds as before.

The microcycle (no branch) is now

=

C + f PROM read access

I counter clock to output

or

Q,, = Tpnpclmc clock to output + T ALU execution

whichever is greater. If we reasonably assume that the PROM read
access time is not longer than the ALU execute time, then the second
equation dominates.

Pipeline Branch

Figure 2-21 examines what happens in this case when a branch is
executed. On the rising edge of the first clock, the address of microin-
struction / is in the counter and memory is fetching the microinstruc-
tion at this address. Execution proceeds as before until the third clock



38 Bit-Slice Design

u CYCLE

cLock | U j - J 5 D B

COUNTER MANST i |uANST i+ 1|u-INST i+ 2| p-INSTR b [pANSTR b+ 1|u4ANST b+2
ADR ADR ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH = ——

uANST i [p-INST i+ 1|p-INST i+ 2] u-INSTb

"nene

PIPELINE REG. [p-INSTi-1| wp-INSTi |u-INSTi+ 1| (HOLD) u-INST b —_—

ALU EXECUTE | EXECUTE (COND (HOLD) EXECUTE S—
p-INST i — 1| p-INST i BRAN u-INST b
INSTR)
ACCUMULATOR [RESULT OF|RESULT OF |RESULT OF ? RESULT OF
p-INST i — 2|u-INST i — 1[u-INST i u-INST b

Figure 2-21. Timing for the pipeline system, branch on result.

signal. At this point the address of microinstruction i + 2 is in the
counter and the memory is fetching microinstruction i + 2.

Microinstruction i/ + 1 is in the pipeline register; this is the condi-
tional branch instruction. The result of microinstruction i is in the
accumulator, and the status bits for the ALU produced by the execu-
tion of microinstruction / are available. The conditional branch causes
the control signals to select the condition to be tested and sets up the
load-counter-if-true conditions.

On the next clock edge, microinstruction i + 2 cannot be loaded
into the pipeline. A control signal must block one clock pulse to the
pipeline register. The branch address is loaded into the counter, and the
memory fetches this address. The pipeline still contains microinstruc-
tion /i + 1, the branch instruction which must not reexecute. Essen-
tially, the execute phase is rendered idle during this microcycle. The
next rising edge of the clock loads the branched-to address into the
pipeline, and execution proceeds as before.

The problems are obvious. First, a control field and possibly some
SSI/MSI controls must be added to prevent cyclic execution of the
conditional branch instruction. Second, for one microcycle the ALU is
idle and for two microcycles the ACC is unchanged. The process is



Simple Controller 39

referred to as ‘‘flushing’’ the pipeline on execution of a branch instruc-
tion: since we have a two-level pipeline, it takes two microcycles to
refill the pipe or to recover. This is not desirable if we branch often in a
program because the time gained by overlapping memory fetch and
ALU execution will be lost. We will ignore the extra hardware and
implied programming constraints.

Improved Architecture

The CCU is improved by placing the next-address MUX to input
directly into the PROM to avoid the counter setup time. The counter
then becomes one of the three inputs into the next-address MUX. The
condition select MUX must be replaced by equivalent logic to generate
the two MUX select signals of the new next address MUX.

The counter has moved to a position where it cannot receive a
proper input. It must be replaced with a register, called the micropro-
gram counter («PC) which is connected to the next-address MUX in-
put, formerly assigned to the counter. An incrementer is connected to
the PROM memory input and outputs to the wPC. The incrementer
always contains the address being fetched plus 1. The outputs of the
incrementer are gated into the wPC on the rising edge of the clock. The
resulting configuration is shown in Figure 2-22.

No Branch

The timing diagram for Figure 2-22 for no-branch execution is shown
in Figure 2-23. What exists now is a three-level pipeline. During the
first microcycle, the memory is fetching microinstruction /. The ad-
dress of microinstruction i is in the wPC. The incrementer is one in-
struction ahead, with the address of microinstruction i + 1. The pipe-
line register contains microinstruction i/ — 1, which is in execution.
The accumulator contains the results of microinstruction i — 2. The
execution proceeds as in earlier diagrams.

Improved Branching

The difference between the designs is shown in the activity which
occurs when a branch is executed, as shown in Figure 2-24.

On the second clock, the memory is fetching microinstruction i + 1,
and the address of microinstruction i + 1 is in the wPC. The address of
microinstruction / + 2 is in the incrementer. Microinstruction / is in
the pipeline register and is being executed by the ALU. The result of
microinstruction / — 1 is in the accumulator.

On the next clock, microinstruction i/ + 1 is loaded into the pipeline
register. This is the conditional branch. The pipeline outputs the con-
trols to the condition select logic which switches the MUX to pass the
branch address. At the instant that the clock edge comes up, the wPC is



40 Bit-Slice Design

*WIISAS A1ejudwojd pavjdwo)

*TT-7 a3y

%0070

%2010

Lo

NI viva

STVNOIS
104LNOD
:\\ —|
JE— H31S1934 3INN3did
%2012
vr 1n0 viva
193135
H3HIO mmwwmmw ss3avaav
1X3N
29V
AHOW3W
WVYHEOOHJOHOIW N3
"‘avon
%2012
* ”_|| NOILONNT /
H3LN3IW3LONI aNnoyo M\ nv
21901 )
anv 3 \\ \\\>//
H
XOW I oiaNod / 8 v
H31S1934 odn XNW S =
z I 0 z _
_ n * 20, 43151934
SNLVLS
dvw
noo nv
¥31S1934
NOILONYLSNI




—-| u CYCLE |-—

Simple Controller

41

clock  _J . | o | el L] LI
INCREMENTER | w-INST i+ 1 HINST i+2 | p-INSTi+3 | w-INSTi+4 uANST i+ 5
ADR \ ADR ADR ADR ADR
u PC REG p-INST i u-INST i+ 1 mINSTi+2 | p-INSTi+3 u-INST i+ 4
ADR ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
u-INST i MANST i+ I\ pINSTi+2 | p-INSTi+3 | u-INSTi+ 4
PIPELINE REG p=INST i—1 p-INST i p-INST i+ 1 | u-INST i+ 2 p-INST i+ 3
ALU EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE
p-INST i -1 pANST i HAINST i+ 1 p-INST i+ 2 p-INST i+ 3
ACCUMULATOR| RESULT OF | RESULT OF | RESULTOF | RESULT OF | RESULT OF
MINST i—=2 | pINSTi—1 | p-INST i u-INST i+ 1 pINST i+ 2
Figure 2-23. Sequential timing for Figure 2-22.
__..l 4 CYCLE I~—
cock  __| el R 1.3 el I
INCREMENTER | u-INST i+ 1 MINST i+2 | w-INSTb+ 1| usINSTb+2 | u-INSTb+ 3
ADR \\ ADR ADR ADR ADR
u PC REG p-INST i ADR| wp-INST i+ 1 u-INST i+ 2 p-INST b+ 1| p<INST b+ 2
ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
p=INST i— 1| p-INST i+ 1\ p-INST b p-INSTb+1 | u-INSTb + 2
PIPELINE REG pANST i=1 u-INST i H-INST i+ 1 u-INST b p-INST b + 1
ALU EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE
u=INST i =1 u-INST i u-INST i+ 1 u-INST b #-INST b +1
(COND
BRANCH) \
ACCUMULATOR| RESULT OF | RESULT OF | RESULT OF | RESULT OF RESULT OF
p=INST i—2 | p-INSTi—1 | uINST i M-INST i+ 1 w-INST b

Figure 2-24,

Timing to **branch on result’” of (microinstruction i (u-INST. i).



42 Bit-Slice Design

loaded with the address of microinstruction /i + 2. As soon as the
outputs are available, if the MUX has not yet switched, address i + 2
will be sent to memory.

The read access time of the PROM is greater than the propagation
delay of the path through the pipeline, condition MUX, and next-
address MUX and is greater than the wPC register setup time and the
propagation delay of its output through the next-address MUX. Any
fluttering of the address inputs occurring from the start of a fetch of
microinstruction i + 2 and then the switch to the fetch of the branch
address is irrelevant, since the memory output is not sensed until the
next clock. Therefore during the third cycle the branch address is
fetched.

The incrementer now contains the address following the branch ad-
dress. On the next clock, execution proceeds with no flushing of the
pipe, with no extraordinary idle times. This is the desired CCU design.

The cycle time is now

_C_,, = fpip-:linc clock =+ ’propugulc + fpropngulc
1o output cond. logic next-address MUX
+ TPROM read + f_rcgixlcr setup
access (pipcline)
or
g,, = [ sewp uPC + Tpropugulc + T PROM reud + [ repister setup
next-address MUX access ipipeline)
or
g,, = [ pipeline clock -+ 7 ALU execution + 1 register sewup
to output (ACC: status)

whichever is longer (whichever is the critical path).



Adding
Programming
Support to the
__Controller

The CCU developed in Chapter 2 is a high-speed unit capable of m.
ing decisions and branching around in the PROM control memory. Any
problem may be programmed if GO TO and IF equivalent programming
structures exist. The limitations are (1) available programming time, (2)
available programming skill, and (3) allowable memory size. The result-
ing program will run but will be messy at best. As the complexity of the
application increases, the need for more powerful programming capa-
bilities increases.

Expanded Testing

The first change is to expand the number of testable conditions. This is
easily done by expanding the branch condition selection MUX which
inputs to the next-address MUX selection logic. Next, allow testing to
be for IF C; or for IF NOT C,. This is done by adding a polarity select
bit to the microword and a polarity logic block between the condition
MUX and the next-address logic block. This improved CCU is shown
in Figure 3-1.

Subroutines

Up to this point, when a branch is executed, the only way to return
from the branched-to routine is to execute another branch, and the
programmer has to know the exact address. This is fine as long as the

43



Bit-Slice Design

44

H31S1934 NOILONHLSNI

NOILONHLSNI
INIHOVIN

*8unsal [euonipuod papuedxy [-¢ dandiy
STVYNOIS
TOHLINOD
H31SID34 3NIN3dId
4
103738 10373S
HIHLO m:w%h%%M NOILIONOD | ALIdVI0d | Ss3uaav
HONVHS 1X3N S
AHOWIW -
WVYHOOHdOHDIW
4 le—
1 X0n
TVNOILIONOD | og—
H3LN3IWIHONI ,
[ S —
XNW J1901
SS3yaav - sS3yaayv ALlHVI10d bet—
— H31S193Y od" 1X3N 1X3N
AJ0710
dVW
AHOW3W




Adding Program Support to the Controller 45

MAIN
PROGRAM

SUBROUTINE

50
51
JSB 52
53
54
55
56
JSB 57
58
59

JSB: JUMP TO SUBROUTINE
RTS: RETURN FROM SUBROUTINE

RETURN ADDRESS REGISTER CONTENTS

START AFTER 52 AFTER 85 AFTER 57

A 53 A 58

Figure 3-2. Subroutine flow. (JSB, jump to subroutine: RTS, return from
subroutine: A, garbage.)

branched-to code is accessed by only one source and is required to
return to only one source or calling location. When two or more micro-
routines need to branch to the same piece of code and it is necessary to
return from executing that code to the individual calling routine, GO
TO and IF structures are inadequate.

It is desirable to provide, instead, a means of storing the address of
the calling statement and a means of accessing this storage for the
return address. This ability in a higher-level programming language
exists as subroutines or procedures.

A subroutine can be called from anywhere in a program, and the
return to the next statement following the calling statement is made
either upon completion of the execution of the subroutine—an uncon-
ditional return—or upon the successful test of a condition—a condi-
tional return. Subroutines should be more than one or two statements
long to avoid choppy code. (Debug and maintenance features must be
stressed in any large microprogram, just as they are in any other pro-
gramming language.)

A flow of a subroutine calling program is shown in Figure 3-2. When
the statement at address 52 calls the subroutine, address 53 is pushed
into the return address store. When the return statement at address 85



Bit-Slice Design

46

SIVNOIS
T0HLNOD

*AJIqe 2UNNOIQNS Yilm NDD  *€-€ dandiy

—_— H3LSI93H INI3dId
%2012 ] * * * ‘
103138 10313s
HIHLO mxm%%%%w NOILIONO| ALINV10d | sS3HaaY
HONVHE 1X3N S
AHOW3W f—
WVHODOHJOYIIW —
p o
ﬂ W
YNOILIONOD fa—
HILNIWIHONI i
* Xnw / 21901 -
E—— Ss3HAAY $S3¥aqv ALIVI0d —
——1  yY3151934 2d |.
’ %2010 1X3N 1X3N
* aNvdx3
Y3LSIO3H INILNOYENS -
ssawaav Nenuzy M3
dYW AHOW3W

!

431S1934 NOILONYLSNI

NOILONYLSNI
3INIHOVWN




Adding Program Support to the Controller 47

MAIN
PROGRAM SUBROUTINE 2 SUBROUTINE 4
50 SUBROUTINE 1 502 SUBROUTINE 3 780
51 503 781
52 782
53 783
54 ’ 784

JSB : JUMP TO SUBROUTINE
RTS: RETURN FROM SUBROUTINE

START AFTER 53 AFTER 89 AFTER 505 AFTER 722
54 90 506 723 —TOS
54 S0 506
54 S0
54

LIFO STACK CONTENTS

Figure 3—4. Nested subroutine flow.

is executed, the return address is popped from the store which provide.
the address of the next microinstruction.

The hardware required to enable the CCU to do this is shown in
Figure 3-3. The next-address select logic is expanded to add a load
enable to the return address register. When a CALL instruction is
executed, a branch to the subroutine is handled as any other branch
with the addition that the contents of the wuPC are copied into the return
address register. The incrementer contains the address of the second
step of the subroutine.

To return, the RETURN statement will cause the next-address
MUX to select the return address register outputs as the source of the
next PROM address, with execution proceeding as if an unconditional
branch had occurred.

Nested Subroutines

Nested subroutines are flow diagrammed in Figure 3-4. Nested subrou-
tines require more than one return address location and a means of
keeping track of the order of the calls. This is accomplished by using a
LIFO (last in, first out) stack, pushing and address onto the stack when
a CALL is executed and popping an address off, when a RETURN is
executed. A stack pointer is used to point to the last entry, which is the
top of the stack (TOS).

The same rules that exist for any programming language apply for
nested subroutines. When subroutines are nested, the call returns are



Bit-Slice Design

48

“191ui0d SOL pue ¥oris 0114 Y1 Sulppy "S- andyy

STVNOIS
10H1INOD
—] H31S193H INN3dId
%9019 * * » * *
103735 10373S
HIHLO mxmw-m%,m% NOILIGNOD| ALIHYTI0d | SS3Haav
HONVHE 1X3N -
AHOW3W _—
WYHDOHJOHIIW
et
p———
* xnw =
YNOILIANOD |ea—
Y3LNIWIHONI
oot
Xnw 21901 e
——— ss3yaav ss3yaav ALIBYI0d o
e | * 1X3N * —  1xan
NOVIS dnd
04N N3
H3LNIOd dvi
%2019 SOl AHOW3IW
NOVLS NI AHLIN3 *
1SV1 OL SINIOd SOL
¥31SI193H NOILONHLSNI

*



Adding Program Support to the Controller 49

treated as parentheses in an algebraic equation—that is, if subroutine 3
calls subroutine 4, then subroutine 4 returns to a point in subroutine 3.
Subroutine 4 cannot jump out of the subroutine nest in one step. Each
return address must be popped from the stack in the order in which it
was pushed onto the stack. The TOS pointer can be incremented (for a
PUSH) or decremented (for a POP) only by 1.

The hardware to allow this is shown in Figure 3-5. A LIFO stack
replaces the return address register, and a TOS pointer, a simple coun-
ter, has been added. The next-address logic is expanded to provide load
enable and PUSH/POP controls to the stack and increment/decrement
(INC/DEC) controls to the pointer.

When a subroutine is called, the branch address passes as before.
The TOS pointer is incremented, and the wPC is moved into the LIFO
stack to the position indexed by the TOS pointer. When a return state-
ment is executed, the contents of the stack location referenced by the
TOS pointer are gated by the next-address select MUX into the PROM
memory. On the next cycle the TOS pointer is decremented.

Stack Size

How large a stack is necessary? Since this stack is to handle micropi

gram subroutines and since the microprogram is composed of a number
of microroutines which also modularize it, deep subroutine nesting is
not desirable, nor is it necessary in the general case. For this CCU, a
stack four deep is provided and assumed to be adequate. Depending on
the ability of the stack to wrap, that is, if the pointer can move from
position 4, binary address 11, to position 1, binary address 00 on the
fifth successive PUSH without any intervening POP, various types of
disasters can occur. The stack may or may not signal that it is full,
depending on implementation details. The programmer is cautioned.

Loops

Another desirable programming feature is the ability to repeat one or
more statements for some number of times until the number of
specified repeats has been completed or until some specified condition
occurs. To handle such loops, the starting address must be storable and
retrievable and a decrementing or incrementing counter must be pro-
vided. The CCU under construction will use a decrementing settable
counter. A basic program flow for a loop is shown in Figure 3-6.

Tristate Lines

The hardware required will require a few changes in the basic CCU.
First, there are no more available inputs into the next-address MUX.
Rather than expand from a 1-of-4 to a 1-of-8 MUX, which would in-



50 Bit-Slice Design

50 o
52
PUSH 51 ¢
REGISTER
52
X
PRIOR TO 53 ¢
START COUNTER
54 ¢
55 ¢
56 ¢ DECREMENT COUNTER
57 ¢
58 ¢
59 ¢
TEST 60 d/
61 ¢ CONDITIONAL JUMP TO LOOP
Py IF COUNTER =0
OR
IF CONDITION = FALSE

Figure 3-6. Loop flow. Conditional jump-to loop (CJP) activated if
counter = 0, orif CONDITION = FALSE.

crease the microword size, we choose instead to reroute the pipeline
branch address lines and have the branch address lines share one of the
MUX inputs with the mapping PROM, since a start address and a
branch address will never occur at the same time. To allow this sharing,
the branch address portion of the pipeline register and the mapping
PROM outputs must be tristate lines and must have output enable
control signals supplied by the next-address select logic.

Start Address Storage

The register used to store the start address of the loop is added in
parallel with the address bus and may be loaded from the mapping
PROM or from the pipeline branch address field. The register is con-
nected to the next-address MUX. Register loading must be controlled
by either the next-address logic control or by microinstruction control.

Counter

A counter is added such that it is loadable from the mapping PROM
or the pipeline branch address field. The technique of allowing a
microword format field to be an address in one instruction and a count
value in another instruction is called overlapping. The next-address
control logic must control the load enable and the decrement control of
the counter. The counter provides a status input to the condition MUX,
which is used to determine when the contents of the decrementing
counter reaches 0. The hardware is shown in Figure 3-7.



51

Adding Program Support to the Controller

STVNOIS
T0HINOD

|

"Aupiqe dooj yum N “L-€ a3y

—~——31V1S-H1

c v

—— ¥31S193Y 3NN3dId
(A T N N N N
103135 103135
y3H1o | SS3VAAY fy511aN0D] ALIMYIOM | SSIHAAY
HONVHE | oNyyg 1X3N
AHOW3W po—
WYHDOHdOUIIN [
T L
\w 1 ‘ P
[} XN f—
TVNOLUGNOD |
HILNIWIHONI
* Og
T XW  igle—rir] 21907 ALIBY10d
%2010 24" S ¥ 0
I P d + 0 = H3LNNOD
¢ 4 N3 ‘avOT
NOv1S ]
¥31NNOD
* a1
L HaiNlod —] u31si03
SoL 2012
31V1S-IHL — 30
dvW
AHOW3W

1

H31S1934 NOILONYLSNI

!




52  Bit-Slice Design

Am29811

The next-address control block is now a complex piece of logic. It
receives 4 bits of encoded instruction from its field in the microword
format (/, — I;) and also receives 1 bit from the condition MUX output
(TEST). It must generate the control signals given in Table 3-1.

This logic already exists as a single device, the Am29811. The 4 bits
of instruction allow 16 different instructions to be generated; their
mnemonic list is given in Table 3-2. (Note that TEST is active high,
i.e., a test fails if TEST # HIGH.)

When a loop is to be executed, an LDCT instruction loads the coun-
ter with the limit value. This instruction must occur before the loop is
executed. Next, the type of loop determines the loop instruction. Three
types exist using the Am29811:

1. Loop until counter # 0, the starting address is stored in last
statement of loop; RPCT.

2. Loop until counter = 0, the starting address is stored in the stack
prior to the loop beginning; RFCT.

3. Loop until a specified test is successful; the starting address has
been stored in the stack in advance: LOOP.

Note that the CCU as developed was for the general case and used a
register with the loops. The Am29811 uses the register as an alternate
subroutine start address (R;) or as an alternate branch address in two-
way jump instructions. For example, JRP is a jump to register address
R, or pipeline address D; depending on the result of a test. During any
microcycle, the register may contain the value of the branch address
from any of the previous microinstructions.

Am2909/11

The CCU logic blocks, the register, the stack, the pointer, the wPC, the
incrementer, and the next-address select MUX all exist as a single
device, the Am2909/11 microprogram sequencer (see Figure 3-8).

Table 3-1 Am29811 Control Signals

Signal Definition

"MAP E Output enable, mapping PROM
PLE Output enable, pipeline

S. S, 2 bits of next-address MUX select
FE File (stack) enable

PUP Stack PUSH/POP control

CNT LOAD Counter load enable

CNTE Counter decrement enable




Adding Program Support to the Controller 53

Table 3-2 Am29811 Instruction Table

CJP Conditional jump pipeline (jump if)

CJPP Conditional jump pipeline: POP stack

CJs Conditional jump subroutine from pipeline ( and PUSH)
CJv Conditional jump vector (interrupt)

CONT  Continue (upc«upc+1)

CRTN  Conditional return (and POP)

JMAP Jump to map address (next op)

JP Jump to pipeline address (branch)

JRP Conditional jump register or pipeline

JSRP Conditional jump subroutine from register or pipeline (and PUSH)
JZ Jump to address zero (initialize)

LDCT Load counter and continue

LOOP Repeat loop, TEST = FAIL, from stack

PUSH  Push stack: conditional load counter and continue
RFCT Repeat loop, counter # 0, from stack

RPCT  Repeat loop, counter + 0, from pipeline

The Am2909 and Am2911 differ in package size. The Am2911 has
one input to the D (direct) position of the next-address MUX, which is
shared with the input to the register (R), while the Am2909 has separate
inputs for each. The Am2909 also has OR inputs which allow the out-
puts of the CCU to be ORed logically with outside data.

Both the Am2909 and Am2911 are bit-slice devices, 4 bits wide and
expandable to any width. The typical configuration is three Am2909/11
units and one Am29811. The devices are tied together through the C;,
and C,, lines of the incrementer.

Three devices can access 2!'2 words or a 4K ROM memory. A rea-
sonably sized CCU might have a PROM memory between 4K and 16K.
Controllers have smaller memories, usually less than 4K, depending on
the particular application.

CASE Statement (Am29803)

There is one other desirable programming structure, the CASE state-
ment or n-way branch. With conditional testing via IF structures, one
test is made at a time and branching is to one of two locations. An
n-way branch performs one test and branches to one of n locations.

The Am29803 is a testing matrix which connects to the OR inputs of
the Am2909. Up to four test inputs may be connected to the Am29803
inputs. A 4-bit encoded instruction selects none, one, two, three, or all
four test inputs to produce up to a 16-way branch in one step.

As a sample application consider the situation where two Am2911
units supply the eight high-order address bits and an Am2909 supplies
the last four bits. When a test is to be done, the branch address of the



Bit-Slice Design

54

STVNOIS
TOHINOD

!

"VII86TWY "606TWY Yyum NDD

*g—¢ dandiy

|

X20710 r

H31S1934 3NN3did

4

.

|

! t

W

103735 10373
H3H10 m%%%%%w NOILIONOD| ALIMY10d | SS3HaGY
HONVHE 1X3N
AHOW3N
WYHOOHJOHOIW
'A
-
XNW i
T IVNOLLINOD ee—
el HIINIWILOM og i
5 . X S 121907 ALBVI0d -
L od" § H @
|I|'_ ¥3LS1934 2d" q
%0012 viigszwy
——my wovis dnd ‘34
%2010 : !
‘ = vﬂgﬂ' H3LINNOD 2L
— xmmu_»o,‘ . ——e H31SI93Y
%2010 %2010 u i
a
1162/606ZWY
30
VA
AHOW3W

|

H31S1934 NOLLONYLSNI

*




Adding Program Support to the Controller 55

start of the branch table is output by the sequencers. With the config-
uration indicated, the branch table must be located within the micro-
program memory so that its first address ends in four zeros (binary).
The test produces four bits which are internally ORed to the Am2909
outputs and which select the specific address within the branch table.
The branch table is nothing more than a set of jump instructions.

Suppose that you are to test four conditions and decide what to do
next, based on the results of the four tests. The software would contain
15 jump instructions for testing, and it would be necessary to execute
four instructions to complete the decision. With the Am29803, the four
tests are input and an encoded result produced. A 15-deep jump in-
struction branch table is sufficient, and only two jump instructions
need to be executed, one to the branch table and one as a result of
landing within the table.

To use the Am29803, a four-bit instruction field must be added to the
microword. A branch instruction is executed with the pipeline field
supplying the Am29803 instruction to be executed in parallel with the
Am2909 instruction. Since the branch address is the one produced by
ORing the Am29803 outputs to the Am2909, the Am29803 is disabled
by sending the appropriate instruction and execution continues. A typ-
ical CCU structure with some Am2909/11 units, an Am29811A, and an
Am29803 is given in Figure 3-9.

Microprogram Memory

The microprogram memory is implemented in ROMs when a final de-
sign is debugged and a high volume production run is anticipated.
ROMs carry a mask charge for their factory programming, and the
production volume must be sufficient to absorb this charge. Low
volume production and prototypes are implemented in PROMs, eras-
able PROMs (EPROMs), or writable control stores. In the PROM fam-
ily, registered PROMs, memories with on-board pipeline registers, also
exist.

Am27S27

The Am27S27 is a registered PROM. It is organized as a 512 by 8
array, with nine address lines and two enable lines. The worst-case
time between the address being presented and the data being ready to
enter the register is 50 ns and referred to as the address to C,, (high) set-
up time, 7, (A). The register must be output enabled, E, and E, both low,
and clocked to load the data. Data are available at the output in 20 ns
worst case, referred to as the delay from C,, (high) to output t,,,, (C,),
tyn (C,), assuming that the chip is already enabled. (Refer to the
Am27S27 data sheet.) If not, the time delay is 25 ns worst case.



*SHUN [ [6CWY .42 S190udNbas 1uedyiudis 210w Y1 put GHETWY U ST I12dUINbIS wradoadosoiw wedijiudis
1583] 241 1Yl 210N "V [186ZWY PUL *VEOREZWY '116TWY ‘606TWY 2u1 Suisn 0D (ua1dAL  *6-€ 24ndiq

Bit-Slice Design

56

Y3IHI0
£o6ZwWY WO n\\
1062wV Ol
M 1 _1 ' X -
ﬁ ¥315103y NI IdId B“ T
[ ] , | :
wm (=213
133138 $S3y0Qv CZ ¢ [=—lduNt
YO foqayagv 1x3n|  HONVHE o 9
1531 04 1NOD c 2 ¥ [=—=NOIS
$378YNT ONY ABOWIW WYHOOHAOHIIW SOUiNGD ALI8V104 3 mw ¢ l—ou3z
NOILINYLSNI $S3800Y $534QAY = u.m 9 }=—uA0
L LX3IN 2 =4 ¢ l=—Abyvd
1L V1186ZWY ¢
14 x4 i)
1
1INA TOHINDD
wONVER ol o |40
AVM 9 v
VE086ZWY T
dl
S
1511 HILINIWIHON wixNa 0w 'S
v ssJy00y 1XIN  Og
27 s+ ¥ Q
SOV _
¥I1S1914 Y 1INNOD
ATNO 606ZWY WYHO0HOH I
43040 MO?
NIV 1S 4001 ONY
INIINOBENS
¥315103Y
1n41n0 1NNODIQVOY
4300230
Y3IINIOd ¥IVIS L—{310 SSivaQv ¥IINNOD D1 p—
dnd 14 ONILY VIS
43ININD3S WyHOOHOHIIW 11BZ'wY ONV 6062wy S$340QY '
¥INIO | 300 40
Y31S1036 NOILINY LSNI

|

sne viva




Adding Program Support to the Controller 57

Only that portion of the microword containing the branch address
need be under output enable control. The remaining output enables
may be used to allow large PROM memories to be constructed. Most
microwords are 32-96 bits in length; most microprogram memories are
1K-4K words deep.

Sample Design

Assume that a 512 by 80 memory is desired. Using the Am27S27
(tristate), ten chips must be placed in parallel with all address and
enable lines common (Figure 3-10).

The first item that needs to be investigated is dc loading. Assume
that the memory is connected to three Am2911 microprogram sequen-
cers, which provide the required 9-bit address (2 = 512). Each ad-
dress line carries ten times the loading represented by one Am27S27

From the data sheets, we get the information in Table 3-3.

The Am2911 can drive

I, of Am2911 _ 12.0 _ 48
I, of Am27S27 0.25

loads. The 512 x 80 memory presents ten loads; thus there is no prc
lem here.

What about the ac loading? The Am27S27 will present a capacitive
load of 10 x S pf = 50 pf, which, in the Am2911 specification, is the
number for which the Am2911 timing is characterized; therefore there
will be no degradation of Am2911 performance.

Sample Design 2

Assume that a 2K X 80 memory is desired.

This requires that an Am25LS 139 decoder (or comparable device) be
used to decode the two added high-order address bits into output ena-
ble E, signals. Three Am2911 units are required to supply the 11-bit
address. The configuration is shown in Figure 3-11, which details the
basic interconnections. The address lines are loaded with 4 X 10 = 40
loads, under the 48 load limit; therefore no buffer drivers are required.

ENABLE LINES E,, E,
ADDRESS LINES Ag—Aq

Eq B2 Ag-Ag

0 1 o0 0000 8 9

Figure 3-10. 512 by 80 Am27527 memory, initial layout.



Bit-Slice Design

58

0g-{g

"W U0 AUt 18 POIQuUD I SLTSLT JO . .MOI,, U0 AjuQ *AJowdw £ZG/zWyY 08 AQ MT “TI—€ dandiy

itg-6Lg :1N0Oyvqg

(177

mg

[ 17
17T
177

17

p

Ty

ll_f

9 .
b

ll__}

ll_{

T
g
L1}

i i

II_}

Y

llJ

179
7Y

ll_j

IIJ
e
ll_{

1Y
T

IIJ

T

[T

i

[T |
[T |
[T

T

_ 3
jo— o
o1 o—
'3
3
o1 o
jo—+— o—
'3
_ i3
jo-
01— o—
'3
_ 23
o—— o
OI. °|l
'3

SLeSlTwy Ov

6€1SSTWY

o<|w<%

Oy -8y s3aNIN ss3vaav

T

6y *Oly S3ININ SS3Haav



Adding Program Support to the Controller 59

Table 3-3 Data on dc Loading

Low Power

Parameter Am2911 Am27S27 Schottky

Vou 24V

P -2.6 mA

Vou 0.5V

I5i 12 mA

Vi 20V 20V

b 25A 20A

Vi 08V 0.8V

Iy —-0.25mA -0.4mA

Cin 5 pf

The Am27S27S are switched by row and are not always enabled.
When the enable signal is switched, there is an added delay of S ns
using . (C,), t, (C,) as the device switches from its high-im-
pedance state to active output, making the total delay from clock to
output 25 ns worst case.

The ac loading is significant with 40 x 5 pf = 200 pf loading on each
Am?2911 address line.

The Am2911 performance must be degraded in accordance with this
increased capacitive load by 0.1 ns per pf over 50 pf:

200 pf — 50 pf = 150 pf

0.1 ns/pf x 150 pf = 15 ns added delay to the Am2911 propagation
time

There is no way to avoid the delay; any buffer drivers inserted
between the Am2911 and the Am27S27 array, while they would remove
the Am2911 degradation, would add a propagation delay of their own of
an approximately equivalent magnitude.

The 0.1 ns/pf degradation figure is conservative, and measurements
have shown that the actual degradation is somewhat less (0.07 ns/pf),

but it is the accepted figure for worst case timing, where conservative
estimates are desirable.






Refining
_ the CCU

In a microcomputer system there is a need to interface the main or
central unit (microprocessor and/or control unit) to one or more exter-
nal devices such as sensors, displays, control panels, keyboards, or
external memory. The main objective is to design the interface to
minimize the effect of the interface activities on the system throughput
or performance. Any contact with any external device will be consid-
ered as input/output handling or I/O. Although there are many schemes
for handling I/O requests, interrupts and queuing will be covered very
lightly herein, principally as a means of alerting the designer to the
existence of the problems. Only those schemes relevant to firmware
design will be explored in any detail.

There are two very basic methods of I/O handling—status polling
and interrupt servicing.

Status Polling

With status polling, the controlling unit must interrogate each periph-
eral to determine if it needs servicing by testing the status line of each
peripheral, one at a time. This might be by the elementary *‘‘round
robin’’ approach, where the devices are tested in a set circular se-
quence. Where different devices are to be handled on a priority basis,

61



62 Bit-Slice Design

priority is accomplished by assigning high-priority devices to more
than one location in the testing sequence. A high priority device is
tested with a higher polling frequency than the low-priority items. A
flowchart of the microprogram testing sequence is shown in Figure 4-1.

The problem with status polling is that a device requesting service
must wait for its turn even if all of the other devices are inactive. The
controlling unit, a processor or a controller, must waste time testing
inactive status lines: this reduces the possible system throughput. With
the sequence test under microprogram control, a long microroutine is
necessary, since each status test requires a full microinstruction. In
terms of the requesting device, the system response is relatively slow.

The scheme is suitable if the frequency of service requests for each
device is known with some degree of accuracy. This allows the polling
frequency to be tailored to the system. The service time, once a request
is acknowledged, should be long compared to the estimated wait time.

YES

INTERRUPT 0
ACTIVE?

INTERRUPT
ROUTINE 0
INTERRUPT 1 YES
ACTIVE?
INTERRUPT
ROUTINE 1

INTERRUPT N YES
ACTIVE?

Figure 4-1. Status polling microprogram flowchart.



Refining the CCU 63

It is not an advisable scheme where interfacing to a human is involved:
that is, the requests should be primarily I/0 to devices. (Human en-
gineering has shown a trend in the patience level of humans to be
declining from the 30 sec that was a measured average when time
sharing first evolved to something much less as the user gains experi-
ence. The damage that has been done to terminals by irate users stands
as mute testimony to this remark.)

Interrupt Servicing

Under interrupt servicing, the controlling unit stops to service an I/O
only when an interrupt request is detected. There are two basic varia-
tions of this scheme—polled interrupt and vectored interrupt.

Polled Interrupt

With polled interrupt, all of the interrupt request lines are ORed into
one interrupt request signal, and the controller tests this line periodi-
cally. Whenever a request is detected, the controller stops and then
polls each device to determine which one made the request. Priority is
assigned by the position a device has in the polling sequence. The
overall throughput has been improved for the cases where no devices
are active. However, the active device must wait while the inactive
devices which proceed it in the sequence are polled.

Vectored Interrupt

With vectored interrupt, all of the device interrupt request lines are
ORed as with polled interrupt. This time, when a request is sensed, the
interrupt is identified to the controller. A priority scheme may or may
not be involved. This scheme requires more hardware, is faster, and
requires less software than the polled interrupt approach. The vectored
interrupt may be thought of as a branch table, while polled interrupt is
comparable to a series of IF-GO TO statements. A microprogram
flowchart is given in Figure 4-2.

Implementation

There are two types of interrupt request or device service request
signals—Ilevel sensitive and edge sensitive.

Level sensitive signals are generally device generated. The device
raises (or lowers) its request line until the system acknowledges the
signal. On receipt of the system acknowledge, the device drops its
request.

Edge sensitive or pulse signals are generally initiated by a transient
event occurrence. The pulse may occur one or more times and must be
*‘caught’’ by the interrupt detection hardware on its first occurrence.



64 Bit-Slice Design

ANY
INTERRUPT NO
ACTIV
YES
INTERRUPT INTERRUPT INTERRUPT
ROUTINE ROUTINE i ROUTINE
0 1 N

Figure 4-2. Interrupt vectoring microprogram flowchart. One microinstruction
interrupt supplies branch address for routine.

Interrupt Storage

A single interrupt store circuit involving a latch and register is shown
in Figure 4-3. By setting the latch bypass control at 1 or 0 the circuit is
level driven or acts as a pulse catcher.

Once the interrupt requests are clocked into the register, the register
output is an interrupt request signal for the system.

Polled Interrupt

Polled interrupt would be implemented by inputting the interrupt
request lines to a multiplexer and the multiplexer output to the condi-
tion test MUX of the control unit or directly into the OE of the Am2910,
for example. The outputs of the register are also fed to an OR gate,
which is another input to the condition test MUX. When a test is made
of the OR input and it is found, e.g., an interrupt exists, a branch is
made in the microprogram to an interrupt polling routine. This routine
is a series of test and branch microinstructions, where each microin-
struction selects one of the interrupt request lines (see Figure 4-4).

In either case, there is a limit on the number of interrupts that can
be handled and a high overhead in the microword widths and the
microroutine length to provide for the desired number of allowable

interrupts.



Refining the CCU 65

LATCH

¢ LATCH
—-oC]c__ \ BYPASS

Cp

REGISTER

INTERRUPT INTERRUPT
REQUEST »__ gi > o} Q |—= REQUEST
(ACTIVE LOW)

TO SYSTEM
FROM SOMEWHERE

LATCH BYPASS = 0. PULSE CATCHER MODE
= 1, LEVEL FOLLOWER MODE

Figure 4-3. Single interrupt storage. Latch bypass = 0, pulse catcher: = 1, level
driven.

Vectored Interrupt

With vectored interrupt, an OR gate is still involved and still feea
into one input of the conditional test MUX. However, the interrupt or
device identification is provided to the system without further demands
on the available MUX inputs.

One scheme for identification of the interrupt is to use a priority
encoder such as the Am2913. This device accepts eight interrupts (ac- -
tive low) and outputs a 3 bit vector, which is the binary index of the
highest priority interrupt line. It also outputs a fourth signal, which is
the OR gate, i.e., ANY. The logical block is shown in Figure 4-5. 4

The index itself is a partial address, and there are various schemes
that could be used. Two are considered here.

The 3 bits could be a complete start address, with zeros driven into
low-order bit locations. This fixes the areas within the microprogram
memory where the start addresses of the appropriate service routines
may be placed.

The 3 bits could be a complete address into the lower address por-
tion of the micromemory, with an interrupt jump table stored there.
This frees the routine to be placed anywhere but requires that the first
few words of the micromemory be reserved for the jump table.

Vector Mapping PROM

Rather than using the main microprogram memory to store a branch
table, which requires a full microword to store what is essentially a
branch address, it is better to use a vector mapping PROM. A vector
mapping PROM is similar to the mapping PROM that was used earlier
for the start addresses of the normal microroutines, with the vector
mapping PROM providing the start addresses of interrupt service
microroutines.



Bit-Slice Design

66

T0HINOD
W31SAS

Xopul 0 'S SIUBWAIOUL UOHINISUIOIdIW YT "X A BIA sdul] 1sanbas 1dnuidut Suijjog

*aul] 1sanbau 1Xdu durwexd 0}

——
93

H31S1934
3INI3did

—

AHOW3W WOHd

99

%0078
H3ON3N0D3S

dvW
AHOW3W

nad

XNW

HOIHM

H31S193H NOILONYLSNI

ANV

XNW

g an XZLEIE

A P
419 812
o a o] g jf—---—-o
€034 "INI
0 Q |- 0 a
¥3LS193Y - Z'034 'INI
0 a 0 a fe——
1 "D3H “INI
0°D3Y "INI
99 N3
* V4
9 SSVdAS HOLVT



Refining the CCU 67

ACTVE ( y, —O

Low
Yg — ————= A 1
¥ =0
Y.;'—_o L e A, L WHICH
! voe—d
3 Am2913
v, —O ———— A
Y, O
\ Yo O |———— ANY

G,. G;. G3, G4. Gg -—+> OE

s EF

1

Figure 4-5. Am2913 priority interrupt encoder/expander (limited!). If Y7 low, output
is (111)2. all other Y are **don’t care.”’ Az A1 Ao represents index of highest priority
interrupt received. This is the address or address modifier for the service routine.

The index bits from the priority encoder are the address bits sup-
plied to the vector mapping PROM, and the PROM output is a full n-bit
address. By using a PROM with tristate output as the vector map, the
map can share the microprogram address input with the mapping
PROM and the branch address. The next-address control block must
supply an OE ., control line in this case (see Figure 4-6).

Next-Address Control

The next-address control can be handled by an Am29811A and
an Am25LS139 decoder. OE,,,, and OE,,;,.i.. are supplied by the
Am29811A. By inputting these signals to the decoder, the three re-
quired output enable signals are generated. The Am29811 has an in-
struction called CJV (Conditional Jump Vector), which operates as any
of the other conditional instructions except that if COND. = TRUE,
the vector map is enabled and OE,,,, and OE ;,,.;in. are used to disable
the mapping PROM and the pipeline register.

If the microprogram sequencer which was developed in Chapter 3 is
modified by making the register and the counter into one unit with the
associated next-address control changes, then the register/counter,
next-address logic, the next-address MUX, the stack, the TOS pointer,
the wPC register, and the incrementer exist as a single IC device. This
is the Am2910 microprogram controller, which can address up to 4K of
PROM memory. It is approximately equivalent to three Am2911s, an
Am?29811, and an Am25LS139. It is referred to as the ‘‘supersequen-
cer’’ and is powerful enough for most controller applications (see Fig-
ure 4-7). The condition MUX, polarity block, and pipeline registers
for the instructions to these devices exist as the Am2922.



Bit-Slice Design

68

[

“dew 101594 € Suisn

—

99

H31S1934

INn3did 20

AHOWIW

WVHOO0Hd "

9%

%0018 |

H3ON3N03S

58

cl

et
A
¢l

ANV

Q

30

dVWN
AHOW3W

§S3yaav

H31SI1934 NOILONBLSNI

INILNOYOHIIW
Ol dVW
HOL103A

‘9-p dandiy

14
0 S3HOWV QA fe—r—mX

o)
° v 510
. %2018 X q
NOILVH1I8HY
. y
4 ¥3000N3 ——0 sH315193Y 0 |=—F—0O)
X3aNI ALIHOIEd

99

S1dNHY3LNI



69

Refining the CCU

*190uanbasiadns g|gzwy L~p 4nTiy

STYNOIS
I0HLINOD
Jmuo
..l! H31S193Y ININ3dId -
b
AHOW3W WYHDOHJOBOIN
_" b — oo
*‘ fo— S e
ﬂOu | o—1 | o—
2 . z
'HILNINIUINI z6 [ ¥300ON3 [~ D3y [=— O
e ——— Sz |— ALHOIHD fa] 1dbl fe— 181
1 2 — L s
- - .. L o ——<} poa>——
40—=] 3151934 24" XOW - 21901 ANY
‘ ALIMY10d
23A
d
L . dvw <
99 =] XOVI1S 2 193439
e ¥31NNOD
=9 /43151934
9g—e{ HIINIOJ b
o16zwyY d¥W3p
VI

!

H3L1SID3Y NOILONHLSNI




70 Bit-Slice Design

Am2910

The block diagram of the Am2910 is shown in Figure 4-8. This device is
controlled by a 4-bit instruction, which would be supplied from one
field of the microword format of the system. These four bits provide
16 basic instructions, which are similar to but not identical with the
Am?29811A instructions. They are discussed in detail in this chapter.
The Am2910 can address up to 4K of PROM/ROM memory. Unused
address lines are left floating at the output: the corresponding D, inputs
should be tied to ground. It provides three output enable controls: PL,

D, cPQ
12
[}RLD FULL
REGISTER/ < PST:C:R | =
COUNTER 1] OINT
ZERO
DETECTOR
5 WORD X 12 BIT
| 1>  stack
ouT
IN F
[ae) J L J L
2 g V
ol ¥£9 ) R F uPC LS MICROPROGRAM
il = COUNTER-
o« &J 91 MULTIPLEXER | REGISTER =
o9 -
°% & i
— o
CC d Cl
C;D z [ = INCREMENTER
o
CCEN o« PUSH/
2% [|POP/HOLD/CLEAR
-
i ; 2 CLEAR/COUNT
OE
- Y
000 S
Ik \g i
= >

Figure 4-8. Am2910 block diagram.



Refining the CCU 71

MAP, and VECT. The 4 bit instruction, the result of the CC, CCEN
inputs, and the internal zero detect for the register/counter all are in-
puts to an onboard instruction PLA (programmable logic array). The
PLA provides the internal controls which correspond to the next-
address control logic. The next address can be from one of four
sources: (1) the microprogram counter (wPC), (2) the LIFO stack (F),
(3) the register/counter (R), or direct input (D), from whatever is con-
nected to the D, inputs. D, is connected to the tristated outputs of the
vector map, the mapping PROM, and the pipeline in the example CCU
developed so far.

Am2910 Instructions

Jump Zero (JZ)

Power up or restart sequences need to use the Jump Zero instruction
if the stack is to be used anywhere in the microprogram. JZ resets the
TOS pointer to binary 0. JZ may be made to execute in various ways.

If a pipeline is being used, resetting the pipeline register to all zero
sends 0, as the hex code for the instruction word. Since 0,;, = JZ, the
Am2910 executes JZ. A reset, restart, or power up control should
cause the pipeline to reset.

Where the pipeline on the PROM memory does not exist, the OE
control on the Am2910 can be used with 10K pull-up resistors to force
FFF,, on the address lines into the PROM memory. The JZ instruction
should be placed at this location. This approach requires an extra
microword in the memory, which is not usually a problem. Either of
these approaches is satisfactory.

JZ does not alter the register/counter, which is assumed to be unde-
fined until reset. Any reference to the register/counter prior to a load
instruction will result in unpredictable behavior.

The pipeline is left enabled in this instruction. With the exceptions of
instructions JMAP and CJV, the pipeline is left enabled to improve
execution speeds. A flow diagram for JZ is shown in Figure 4-9.

All instructions pass the next-address select bits, which include the
Am2910 instruction field, the condition code multiplexer select bits,
and any additional control pin fields (RLD, CCEN). All instructions
cause a next-address value to be switched through the next-address
multiplexer and to be incremented by the incrementer.

Continue (CONT)

Sequential program segments use the Continue statement, whose
flow is shown in Figure 4-10. The micro-PC register is the source of the
next-address. The register/counter and the stack are not altered; the
CC input is unused. The pipeline output enable PL is enabled.



72  Bit-Slice Design

CONT 0 FROM SPECIAL ADDRESS OR RESET OF

CONT 1 JZ PIPELINE REGISTER. EITHER SEND 000

BONT 3 N (J2) TO Am2910 OR THE INITIALIZATION
(START, RESET) COULD SEND ADDRESS FFF
INTO MICROMEMORY. JZ SHOULD BE PLACED

THERE. JZ RESETS THE STACK AND SHOULD
BE EXECUTED FIRST.

CcC COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
X . X CLEAR 0 NC PL

Figure 4-9. Jump zero (JZ, 0).

Jump Map (JMAP)

The instruction used to start different microroutines based on op
code decode, and a mapping PROM or the equivalent construct, is
JMAP. This GO TO branches to the address appearing at the D, inputs,
and the MAP output enable is active. In a CCU such as the one being
discussed, this will gate the address output by the mapping PROM into
the Am2910. The register/counter and stack are not affected. This
statement is normally located at the end of a microroutine or placed at a
case-branch (jump-op) location in the microprogram (see Figure 4-11).

Conditional Jump PL (CJP)

The simplest IF construct is the Conditional Jump to an address in
the pipeline register. The jump is made if the CC input is LOW (condi-
tion true). If the CC input is HIGH, the test fails and CJP behaves as a

CONT 50
CONT 51 SEQUENTIAL
PROGRAM
T 52

S FLOW

CONT 53
cc COUNTER =0 STACK ADDRESS REGISTER/ OE

LINE SOURCE COUNTER

X X NC uPC NC PL

Figure 4-10. Continue (CONT, E).




Refining the CCU 73

CONT 50
CONT 51
CONT 52
JMAP 53 @20 TO 90 CONT
91 CONT
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
X X NC D NC MAP

Figure 4-11. Jump map (JMAP, 2).

CONT instruction. The pipeline is enabled and the register and stack
are unaffected (see Figure 4-12).

Conditional Jump Vector (CJV)

The IF construct used to test for the occurrence of an interrupt
request is Conditional Jump Vector. If the CC input is low, the next
address is provided by the vector map. The stack and register counter
are unaffected. The VECT enable is active. If CC is high, CJV behaves
as CONT (see Figure 4-13).

Load Counter and Continue (LDCT)

There are a number of instructions which use the counter capability
and several which use the register capability of the register/counter.
Each requires that the register/counter be loaded prior to its execution.
Load Counter and Continue provides this ability. LDCT behaves as a

CONT 50
CONT 51
IF TEST CJP 52 (§
D4ss
CONT 53
CONT 54 @ FAIL 30 CONT
31 CONT
cc COUNTER =0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
!
PASS D
FAIL X NC uPC NC PL

Figure 4-12. Conditional jump pipeline (CJP, 3).



74 Bit-Slice Design

CONT 50
CONT 51
IF TEST CJV 52 @—__PAsg

CONT 53 20 CONT
CONT 54 ¢ FAIL 21 CONT

cc COUNTER = 0 STACK ADDRESS REGISTER/ OE

LINE SOURCE COUNTER
PASS D
FAIL X NC 4PC NC VECT
Figure 4-13. Conditional jump vector (CJV, 6).

continue statement except that whatever is gated on the D; inputs is
unconditionally loaded into the register/counter. The PL enable is ac-
tive; the stack is unaffected (see Figure 4-14).

COND Jump R/PL (JRP)

The Conditional Jump Register/Pipeline should actually have been
given the mnemonic CJRP. (The mnemonic names refer to the De-
velopment System, AmSYS 29, preprogrammed Definition File.) The
choice of where the next address comes from is made based on the CC
input. If CC is LOW, the next address is from the pipeline. If CC is
HIGH, the next address is from the register/counter. LDCT or an
equivalent operation must have occurred anywhere prior to JRP. Re-
gardless of the result of the test, the flow is nonsequential. The PL

CONT 50
LDCT 51 @
CONT 52 REGISTER!
CONT 53 COUNTER
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
X X NC uPC LOAD PL
Figure 4-14. Load counter and continue (LDCT, C). This instruction must be

executed before a loop instruction or a jump which used the register.




Refining the CCU

LDCT 27 @ REGISTER/COUNTER

CONT 50
CONT 51
CONT 52
IF TEST JRP 53

ADDRESS 80 FROM PIPELINE:

75

70 FROM REGISTER:
ADDRESS 70 FRO GIS CONT70 97, oass? 80 CONT
CONT 71 81 CONT
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
PASS D
EAIL X NC = NC PL

Figure 4-15. Conditional jump register/pipeline (JRP, 7). LDCT must have been

executed somewhere ahead of JRP.

enable is active, and the register/counter and the stack are unaffected

(see Figure 4-15).

COND JSB PL (CJS)

Microprogram subroutines may be called by Conditional Jump Sub-
routine with the address of the first microinstruction of the subroutine
given in the pipeline register. If CC is LOW, a branch is taken to the
subroutine. The contents of the wPC, which on the flow diagram of
Figure 4-16 is address 53, are pushed onto the stack and the TOS pointer

PASS PUSH ON TO
CONT 50 + A STACK
CONT 51 /
IF TEST CJS 52 @ 90 CONT SUBROUTINE START ADDRESS
CONT 53 FAIL 91 CONT COMES FROM BRANCH ADDRESS FIELD
CONT 54 92 CONT

P
CONT 55 TURN™~3 93 CRTN

cc COUNTER =0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
PASS PUSH D
FAIL X NC uPC NC PL

Figure 4-16. Conditional jump subroutine from pipeline (CJS, 1).




76  Bit-Slice Design

is incremented. If CC is high, CJS behaves as CONT. The PL enable is
active; the register/counter is unaffected.

COND JSB R/PL (JSRP)

Subroutines may also be called by a Conditional Jump Subroutine
from Register or Pipeline, which should actually have been given the
mnemonic CSRP. The instruction is similar to JRP except that regard-
less of the test result the next sequential address (55 in Figure 4-17) is
pushed onto the stack and the TOS pointer is incremented. As with
JRP, LDCT or an equivalent operation must have occurred prior to
JSRP. If CC is LOW, the subroutine start address is taken from the
register/counter. The PL enable is active; the register/counter is unaf-
fected.

COND Return (CRTN)

Once a subroutine has been completed, an unconditional return to
the calling program is accomplished using a Conditional Return State-
ment. The conditional return is also used to conditionally end a subrou-
tine based on the result of a test.

There are two ways to allow an unconditional return—either the
selected input to the conditional MUX is a forced PASS input (ground-
ed in the active low case), or the CCEN input is switched high. CCEN
will be discussed later. If CC is LOW either as a result of a valid test or

LDCT 30 *—‘ REGISTER

CONT 51
CONT 52
CONT 53
IF TEST JSRP 54

PUSH ON TO STACK
PASS OR FAIL

START ADDRESS

FROM REGISTER: CONT 90 80 CONT START ADDRESS

81 CONT FROM BRANCH

CONT 91
ADDRESS FIELD:
CONT 93 83 CONT
CRTN 94 CONT 56 84 CRTN
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
PASS X PUSH g NC PL
FAIL

Figure 4-17. Conditional jump subroutine register/pipeline (JSRP, 5). LDCTora
register load must occur somewhere prior to JSRP.



Refining the CCU 77

CONT 50 ¢ PASS
90 CONT

CONT 51
CJS 52 91 CONT
CONT 53 92 CONT

CONT 54 ) 93 CRTN CONDITIONAL RETURN
CONT 55 94 CONT

95 CONT

96 CONT

@ 97 CRTN UNCONDITIONAL RETURN

cc COUNTER =0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
PASS X POP STACK NC PL
FAIL NC uPC
DISABLE
(CCEN=H X POP STACK NC PL
ORCC =1)

Figure 4-18. Conditional return (CRTN, A).

from a forced low input, the next address is taken from the LIFO stack
and the stack is POPped (the TOS pointer is decremented). The regis-
ter/counter is unaffected, and the PL enable is active.

If CC is HIGH, CRTN behaves as CONT. In either case, CRTN
should not be executed if the stack is empty (see Figure 4-18).

Repeat PL CNTR # 0 (RPCT)

Loops are handled with four different instructions. One of these is
the RPCT Repeat Loop instruction, with the start address of the loop in
the pipeline register. Essentially it is a conditional jump pipeline in-
struction. The register/counter must have been loaded previously via a
LDCT or equivalent operation. If the counter is not equal to 0, the
jump is taken and the counter is decremented. If <KCOUNTER> = 0,
then RPCT behaves as CONT. The stack is unaffected, and the PL
enable is active (see Figure 4-19).

Push/COND LD CNTR (PUSH)

The counter can be conditionally loaded during the same instruction
that pushes the current value of the uPC register onto the LIFO stack.
If CC is LOW, the counter is loaded from the pipeline register. If CC is
HIGH, the register/counter is unchanged. The PUSH occurs regardless
of the CC input value. The PL enable is active (see Figure 4-20). PUSH
must immediately precede the first microinstruction in a loop con-
trolled by LOOP, RFCT, or TWB.

Repeat Loop, CNTR # 0 (RFCT)
Another Repeat Loop structure is RFCT, which causes a loop to be
repeated if <COUNTER> # 0. The start address of the loop is on the




78 Bit-Slice Design

CONT 25 @ REGISTER/
LOCT 26 COUNTER

REGISTER/
CONT 47 CONT 50 COUNTER
CONT 48 @ - LDCT 51
CONT 49 ¢ RPCT 52 (¢
RPCT 50 (¢ CONT 53
CONT 51
cc COUNTER =0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
=0
uPC NC
X 70 N D DECREMENT PL
(PART OF
INSTR. PLA)
Figure 4-19.

Repeat pipeline if counter = 0 (RPCT. 9). (Loop on one or more
statements, beginning address of loop in pipeline [at RPCT statement].)

top of the stack. The counter is decremented when the branch is taken.
If <COUNTER> = 0, RFCT behaves similarly to CONT with the
added operation of popping the stack. The PL enable is active. A loop
using RFCT requires PUSH immediately preceding the first microin-
struction of the loop, the microinstruction whose address is to be

pushed onto the stack (see Figure 4-21). RPCT and RFCT are both
microprogramming equivalents of DO loops.

PASS OR FAIL

CONT 50 @smcx

CONT 51

IFTEST  PUSH 52 & Pasg
CONT 53 @ REGISTER/COUNTER
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER

ol x PUSH PC LOAD PL
FAIL . NC

Figure 4-20. Push stack and conditional load counter (PUSH. 4). This instruction
must immediately precede the first statement in a loop controlled by LOOP or RFCT.




Refining the CCU 79

(PUSH ON PUSH; REFERENCE
@ SIACK [NO POP] ON RFCT AND

PUSH/—\ COUNTER = 0, POP ON RFCT
MUST IMMEDIATELY PUSH 50 ¢ AND COUNTER = 0)
PRECEDE THE FIRST @ REGISTER/

STATEMENT IN LOOP CONT 51 COUNTER
\__/com 52 ¢
D (LOAD ON PUSH; DECREMENT
CONT 53 ON RFCT IF COUNTER = 0)
IF TEST RFCT 54
CONT 55 ¢
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
=0 POP uPC NC oL
A #0 NC STACK DECREMENT

Figure 4-21. Repeat loop from stack if counter # 0 (RFCT, 8).

Test End Loop (LOOP)

A third repeat loop construct is LOOP, which behaves similarly to
RFCT except that the test which determines whether or not the loop is
repeated is some selected condition other than <COUNTER> = 0. On
CC = HIGH, LOOP behaves similarly to CONT, with the added opera-
tion of popping the stack. On CC = LOW, the loop start address is
referenced from the top of the stack. The register/counter is unaf-
fected. The PL enable is active.

A loop using the instruction LOOP requires that PUSH immediately
precede the first microinstruction, the one whose address is to be
pushed onto the stack (see Figure 4-22).

LOOP is a microprogramming equivalent of a DO UNTIL or DO
WHILE loop.

COND JUMP PL and POP (CJPP)

The way to conditionally exit a loop is to execute CJPP. This instruc-
tion may also be used to conditionally exit a subroutine where a return
to the calling location is to be aborted.

CJPP is a conditional jump using the pipeline register to provide the
branch address (see Figure 4-23). The difference between CJP and
CJPP is that the latter pops the stack when CC = LOW. When CC =
HIGH, CJPP behaves as CONT. The PL enable is active.

CJPP is used to conditionally exit loops formed using PUSH and
RFCT, TWB, or LOOP. It is not needed for loops formed with RPCT
which do not involve the stack.



80 Bit-Slice Design

CONT50 ¢
(52) sTack
PUSH MUST PRECEDE THE PUSH 51
FIRST STATEMENT IN LOOP CONT 52 (PUSH ON PUSH; REFERENCE [NO POP]|
CONT 53 ON LOOP AND TEST = FAIL; POP ON
CONT 54 LOOP AND TEST = PASS)
CONT 55
IFTEST LOOPS56 @ FAIL
CONT 57 ¢ PASS
[} COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
PASS POP uPC
FAIL X NC STACK NC PL

Figure 4-22. Test end of loop (LOOP, D). Must be preceding first statement in loop.

Three-Way Branch (TWB)

There can be instances where the construct DO X TIMES WHILE
C, = FALSE is necessary. The microinstruction equivalent of this is
TWB, a dual-test branch or loop microinstruction (see Figure 4-24).

TWB will loop, referring to the top of the stack for the start address,
if CC = HIGH and <COUNTER> # 0. The stack will be POPped on
the branch if CC = HIGH and <COUNTER> = 0. TWB will behave
similarly to CONT if CC = LOW with the addition of popping the
stack, regardless of the counter value. If <COUNTER> # 0, the
counter will be decremented. In all cases, the PL enable is active.

An example of the type of problem for which TWB is useful is given
in Figure 4-25. This is a key match memory search, where the counter
defines the length of the block of memory being searched and the
condition tested is a match on the selected key.

STACK
PUSH 50
CONT 51 PASS
CONT 52
CJPP 53 { 90
CJPP 54 80 ¢ 91
LOOP 55 81 ¢ 92
CONT 56 ¢ FAIL ¢ 82
cc COUNTER = 0 STACK ADDRESS REGISTER/ (3
LINE SOURCE COUNTER
PAS POP D
FAILS X NC uPC e Ak

Figure 4-23.

Conditional jump pipeline and POP (CJPP, B).




Refining the CCU 81

STACK
PUSH MUST IMMEDIATELY PUSH 63

PRECEDE THE FIRST CONT 64 REGISTER

COUNTER
STATEMENT IN THE LOOP
TWB 65 (g 72 CONT
CONT 66 f =% EONT

CONT 62

cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
PASS Z0 POP uPC SEEEEMENT
PL
— =0 POP D NC
#0 NC STACK DECREMENT

Figure 4-24. Three-way branch (TWB, F).

Control Lines

In addition to the four instruction lines, there are additional control
lines which allow variations in the instructions.

Register Load

The RLD pin is the register load control pin and is normally held
high. When RLD = LOW, whatever is on the D, bus is loaded into the
register/counter. The RLD pin allows the Continue (CONT) instruction

64 PUSH START ADDRESS

OF ROUTINE ON STACK
LOAD LENGTH OF MEMORY
PESHE TO BE SEARCHED
CONT 64
(FETCH NEXT
OPERAND;
CONT 65 COMPARE TO
KEY; ETC.)
j COUNTER # 0; DECREMENT
CONT 66 ¢
COUNTER = 0
NO MATCH ——= —_—
TWB 67 @ 78 CONT
NO MATCH
WITHIN MEMORY
SECTION
CONT 68 ¢ 79 CONT
MATCH FOUND
J

Figure 4-25. Programming a memory search on key for a search on n + 1 locations.




82 Bit-Slice Design

to become Load Register and Continue, the same as the existing
LDCT. It also allows a Jump Map (JMAP) to become Load Register
and Jump Map, which could be useful if fail-soft procedures are desir-
able. (Selected instructions could be reexecuted on recovery.)

It could also lead to problems. Misuse, such as holding RLD low
during Repeat Loop from Pipeline Until <COUNTER> = 0 (RPCT),
could lead to infinite loops. RLD should not be low during any instruc-
tion loop where the counter or register is being used. This includes
RFCT, RPCT, and TWB loops.

Test Enable

The test pin, CC (active low), is the input from the conditional test
MUX, an Am2914, or other structure. All conditional instructions ref-
erence this pin. The test enable CCEN, if held high, causes all condi-
tional instructions to become unconditional instructions, behaving as if
the CC input were LOW (condition = true) and forcing the appropriate
jump. This affects nine instructions: see Table 4-1.

CCEN can be supplied by the microinstruction or could be tied to
one of the instruction lines into the Am2910.

Carry In

There is a C,,, pin which is normally held high. When C;, = LOW the
incrementer does not increment, holding the microprogram in a one-
statement loop. To avoid infinite looping, the C,, pin, if controlled,
must not be controlled via the pipeline register: it must be controlled
by independent hardware. The C;, pin can be used to hold a program at
NOP or a similar instruction until some external signal triggers the
control circuit.

Stack and Enable

There is a five-deep stack on board the Am2910 which, unlike the
Am2909/11 stack, will not ‘‘wrap around.” The behavior of the
Am2910 should be considered to be undefined under stack misuse. A
pin is provided that can be used during initial design and/or debug
which allows the stack to be tested. FULL goes low to indicate when
five items have been pushed onto the stack without any pops.

The tristated control OE pin allows the Am2910 to share a bus with
other devices, including other Am2910s.

Interrupt Handling

In a computer system, the minimal storage required for the system
to be able to resume operations after handling an interrupt would pro-
vide the ability to store the PC register and the PSW, which includes



Refining the CCU 83

Table 4-1 Effect of CCEN = HIGH
Original New
Instructions Behavior Instructions
CJP Jump to pipeline JPL
CJPP Jump pipeline and pop stack JPP
CJs Jump to subroutine JsSuB
CJv Jump vector JVECT
CRTN Return RTRN
JSRP Jump to subroutine (same) JSuB
LOOP POP stack and continue POP
PUSH PUSH, load counter, and continue PCNTR
TWB POP stack and continue (same) POP

the ACC register and the status bits. More complicated systems require
additional storage, such as the storage of the current stack pointer,
scratchpad registers, and all other machine registers. Nested interrupts
are handled in software by stack operations and subroutine call proce-
dures. Enable/disable capability and clear interrupt mechanisms are
essential. Clear interrupts can be clear one, clear several, or clear all
current interrupts in a system. Refer to Figure 4-26 for the flow of
interrupt handling via software; it is seen to be markedly identical to
subroutine handling.

RETURN ADDRESS

55

MAIN
PROGRAM
50 /
© /
occuRrence oF | 3! Qs?/
INTERRUPT REQUEST 1 oY
PRIOR TO TEST Q“’/
52 o%
Q
<0
C\'\/
L s g

TEST FOR /

503
54

IF NO REQUEST - 504

502 ADDRESS IS INTERRUPT

SOURCE DEPENDENT

OCCURRENCE OF CONTINUE
INTERRUPT REQUEST 55
N 505
S,
T EREN
Dq\
Ocy 506
7 TR
‘o s07
Figure 4-26. Interrupt handling program flow (recoverable status).



84 Bit-Slice Design

Clearing Interrupts

To be able to clear the current interrupt using the interrupt hardware
developed earlier, the vector map index generated by the priority en-
coder must be brought out to flip-flops for storage. A control bit from
the pipeline will cause the actual storage operation. The flip-flops feed
a decoder, which is enabled under pipeline control. When the decoder
output is enabled, it drives the clear lines into the latches and the
interrupt registers.

Interrupt Enable

Occasionally it is desirable to block one or more interrupts during a
program, such as (1) when a peripheral is ‘“down,’’ (2) when a unit is
under on-line test, (3) when selective testing is underway, or (4) when
high priority software is being executed. Bit masking allows any one,
several, or all interrupts at any level or levels to be blocked.

Bit masking can be added to the control being constructed by adding
a loadable mask register which will block all masked bits from being
input to the priority encoder or from triggering the interrupt request
line.

Nested Interrupts

Nested interrupts behave as nested subroutine calls, as shown in the
flow diagram of Figure 4-27. Where multilevel interrupts can exist, a
higher priority interrupt must be able to interrupt alower level one. Ina
microprogram controlled interrupt system, the presence of an interrupt
is tested for by a conditional test statement such as CJP or CJS. The
test should be made at a quiescent point in the microroutine, usually
where the stack activity is low and the counter/register is not in use. No
interrupts should be tested for within a loop or a subroutine nest. Care
must be exercised to prevent the stack from overflowing.

Status Fence

To implement a nested interrupt capability, a status fence is re-
quired. Because there is a particular device in mind, this is shown in
Figure 4-28 to consist of: (1) an incrementer to increment the current
vector index being generated by the priority encoder, (2) a loadable
status register to hold the current ‘‘fence’’ value, and (3) a comparator
to compare the loaded status (always greater than the one in service)
and the current vector index being generated. The comparator will
generate a signal when the incoming interrupt is equal to or greater than
the current status. This signal will be NANDed with the interrupt sig-
nals from the unmasked interrupts to generate an active low signal to
be input to the CC pin of the Am2910 or to a condition MUX input pin.
Also, the comparator output enables tristate buffers that control the
output of the actual interrupt vector index to the vector map.



Refining the CCU 85

MAIN
PROGRAM
*° PUSH 505:
PUSH 54: BEGIN INTERRUPT
51 BEGIN INTERRUPT SERVICE
SERVICE ROUTINE 2
ROUTINE 1 P 810
52 -
o""\'/ 811
53 s
812
54
TESTS FOR_— |— RETURN -—
RRUPT REGUEST 7 POP 505

INTERRUPT REQUEST

56

57

Figure 4-27. Nested interrupt flow (recoverable status). Recovery of addresses saml
as nested subroutines.

Other Embellishments

To recover from an interrupt or to unwind an interrupt nest, the
status and mask registers must be readable (so that they can be saved)
as well as loadable (so that they can be restored). The control should be
able to use the mask register or mask register input bus to selectively
clear some or all interrupts to expand interrupt clear capability.

Am2914

The Am2914 (see Figure 4-29) incorporates all of these desired fea-
tures. It contains (1) the latches, (2) mask register, (3) status fence
register, (4) priority encoder, (5) vector hold register, (6) clear control,
(7) incrementer, (8) comparator, and (9) interconnection logic for ex-
pansion. One device handles up to eight interrupt sources.

The instruction set for the Am2914 is shown in Table 4-2, and
a program flow is shown in Figure 4-30 which diagrams where, with-
in a microprogram structure, the various Am2914 instructions could
appear.

Interconnection of the Am2914

Single Unit
The Am2914 requires that the status overflow pin be connected to
the interrupt disable pin. The GAR and GEN pins are grounded; GAS,



Bit-Slice Design

86

“J2[]0.NU0D 1dNLIdUI 10) JuINIRW 11q PUE *3DUIJ SNILIS *[0IIU0D 11I[D)

S 301AH3S ONV LdNHYILNI — Q3AIHHY §
Q3HONOI — G3AIHHY €

3JIAE3AS NI v D3

Q3JIAH3S ONI38 3NO ONILSIX3 NVHL HIHOIH 3NO SAVMIY

H31S1934
SNLVLS 30N34 SNLVIS
Y
€1 ’ 11 LdNYYILNI AV
Q31VH3IN3D 1S3NO3Y LdNYYILINI  SNLVIS €4 Q3DIAH3S ONIZ8 INO NVHL
'SNLVLS <= HOLO3A 4l a H3IHOIH LdNYYILNI NV AINO
EELVZ [ ole] HILN3W3IHONI :3W3HOS LdNYYILNI Al 3dAL
v
1S3n03y oL
LdNUY3LNI
—(] —C§
HOLD3A A\ L/
€
43181934
M 9 ysww 57—
HOL123A 30
HO193A
D’ SUBE | woiveanao
£ 7 Z HOL1D3A 7 H3A0ON3
ALIHOIHd
8
{ 1
e/
39VHOLS sl
1dNYY3INI | g
H31S1934
Q10H
HOLO3A 410
Y T0H1INOD /
e’ H4v310 8’

‘§T—p 2andiy




Refining the CCU 87

AVYNOIS
dnNoYo
SO

MOT3H¥3A0
SN1VLS

aN3s
3JONVAQY
dNOY¥O
378vSIQ
37ddIY

378vSI0
RERRA AL

1S3N03Y
1dNYH3LNI

1nd1no
HO123A

A

‘weadelp ¥00q pl6TWY  67-p 24ndig

1ndLN0 on
JLVLS 33HHL &l TVNOILD3H1018 &
Nid 1nd1n0 C}F—
1nd1N0
3A1303Y (ob— Nid LnaNt —]
JINVAQY dNOYO ¥0.12371702 N340
ST08WAS NId
d014:d114 ¥3151934 ¢ sng 1 %2070
C————0 0318983 jo=—<] SNLVLS —~—KTJ SN1v1S N 4
dNO”O 1S3M01 318vAN3 18 € 's
dnoYo
d0144d174 39 ] 300730 S1NdNI
{J—ojmonsu3no . NOILONHLSNI  F——<_] NOILONYLSNI
SNLVLS 378vsIa - v ;
1dNYYILINI ] OQHOIW \
C— il _ () 8vN3
_ NOILONYLSNI
3 ¥ 3LNIW3IHINI Eh%wnwmz_
e .
378VN3 dNOYD
anv
(O}——0| 1S3N03H HINI ¥OLVHYVIWOD
S A 118 €
_ A ¥31S193H NSYW sng - W
P 2 H3Q0ON3 Ot 188 A m..M 2
&} L — AL1HOIHd 1 8 W
> N € 1NdNI 8 8
¥315103Y Vo
010H HOLI3IA A
18 ¢ 7 is=¢
{ "8
ya
7
€ 70Y¥LNOD 03y SIHILYY SLNdN!
4014 d14 ¥v31d b PR P i
378vN3I HV3IID o loO—~ -0 d
¥O1D3A 1 8

_ O SSVdAS
HOLVY



Bit-Slice Design

88

LLLL 4/4 9|qeua jag 1senbai 1dnuajul 3|qeusy
0L} Ja)sibais amus peon Ja)sibai ysew peo

4/4 8|qeus }sanbai ydnuajul
LOL L 18sa1 pue sydnusajul ajqesiq 1senbai ydnuajul 8|qesig
0011} Siq e sesp) Ja)sibal ysew Jea|)
LEOL } = SNQ-N dlaym 1iq 18S 1ays16au ysew 19s 1g
0101 | = SNQ-|\ 8J8um Jiq Jes|n Jais1bas ysew tesp g
1001} d/4 397 pue snjejs peo lays1bas snjeys peo
0001 pajaye | = snqg-p alaym sjig Jaysibal ysew jag
1110 ulayed ajqeus peay Ja)sibas ysew peay
0L1LO 80ud) Snjejs peay laysibas snjejs peay

uononJsul ise| Jesd dn sjpg—

80us) Snje}s s}eS—

8o1nas Bunsanbal jdnusyul
1010 Awoud ysaybiy jo 101084 peay— J10J03A peay
0010 801AIBS UO JB3|0 10 Jeajd JYy10adg peal 10j0aA ise| ‘sjdnusiul Jesj)
1100 (Buneoy sng-|y) JB80 BAIDB|BS Jg)sibay ysew wouy sjdnuajul 1ea|n
0100 1eajo 8AI09|as SNQ- wouy sjdnuajul zes))
L1000 sia)sibai ‘sayoje| ||y sidnuajui |je Jeaj)
0000 azjlenuy| Jes|o Jsjse
MM MM

8P020.IoIN uonduosaq UoIONJISUI0IOIN

18S uononiisul yLegwy g-p alqeL



Refining the CCU 89

START UP
MASTER CLEAR ® PART OF INITIALIZE
ROUTINE
© LOWEST GROUP ENABLED
® CLEARS MASK
® CLEARS STATUS
e ENABLES INTR REQ
IF DESIRED
LOAD STATUS ® FOR RESTRICTIVE RUNNING
LOAD MASK ® SELECTIVE BLOCKING
SET MASK ® MASK SET TO ALL 1'S
DISABLE INTR REQ e DOES NOT DISABLE REGISTER:

PREVENTS SEQUENCER FROM SENSING INTR REQ
BY DISCONNECTING IT

IF INTR ENABLED - ELSE ENABLE INTERRUPTS
TEST INTR REQ LINE (SEQUENCER—-CCU)

IF ANY

IF DESIRED

READ MASK ® USE TO RESTORE THE STATE
l READ STATUS OF THE SYSTEM AFTER INTR SERVICED

READ VECTOR ® ENABLES VECTOR OUTPUTS; PUTS
l V + 1 INTO STATUS REGISTER

A 4

PROCESSOR SENDS |F DESIRED:
ACK TO DEVICE
LOAD NEW MASK

LOAD NEW STATUS

BIT SET MASK
DEVICE CLEARS BIT CLEAR MASK
INTE{RRUPT l

IF NO BYPASS

CLEAR INTERRUPT e CLEAR CURRENT VIA CLEAR
LAST VECTOR READ
e CLEAR ALL
e CLEAR USING MASK
e CLEAR USING M BUS
e LEVEL (BYPASS) FALLS ON DEVICE CLEAR

PERFORM ROUTINE

IF DESIRED

LOAD MASK ® RESTORE SYSTEM “'STATE"
LOAD STATUS

RESUME OPERATION
Figure 4-30. Sample usage of Am2914 instructions.



90 Bit-Slice Design

GSIG, RDIS, and PDIS are left floating. When the highest priority
interrupt is reached, the interrupt controller is disabled until a new
status is loaded or a master clear is executed. The highest level inter-
rupt should be reserved for catastrophic occurrences.

For all other status levels, when a higher status is to be executed,
and recovery is desired, the existing status should be read so that it
may be reloaded upon completion of the higher level interrupt, if
another higher level interrupt has not occurred in the interim. Care
should be taken to eliminate or reduce cycles in status read and load
operations. (Possibly a decrementing of the current status and check on
interrupts is a better unwinding procedure.)

Interconnection

To interconnect a single Am2914 to the microsystem, the Am2914
must receive four instruction bits and an instruction enable bit from the
pipeline register. The 16-bit system data bus would be used to supply
the 3-bit status read/load lines and the 8-bit mask read/load lines. The
vector output would feed the vector mapping PROM or other decode
unit, which in turn would connect to the 16-bit data bus. The eight
interrupt request lines would be connected to whatever interrupts are
to be allowed in the proper priority sequence. The interrupt request
line is tied high through 470Q and inputs to either the CC input of the
Am?2910 or some similar connection. This provides an 8-level interrupt
control system (see Figure 4-31). A 16-level interconnect is shown in
Figure 4-32 using an Am2913 expander; 64-level systems are demon-
strated in the AMD application note.

Microprogram Interrupt

The Am2914 interrupt controller may be interconnected to provide a
microprogram level interrupt system or a machine program interrupt
system. In the former, the microcode would contain tests for the occur-
rence of any interrupt at ‘‘quiet’’ points in the microcode. These are
placed where the subroutine stack is empty, such as at the end of the
microroutine for an op code or between modules within a very long
microroutine. The response to the interrupt is relatively fast; the op
code itself is unchanged, but it does require additional control memory
storage.

The occurrence of an interrupt would cause a branch address to be
input to the PROM/ROM (through the Am2910 or Am2911s), which in
turn would cause the interrupt service microroutine to begin executing.
The end of this service microroutine would cause either a return to the
interrupted op code microroutine or a JMAP to fetch the next op code.
The interrupt routine could be called by a simple conditional jump or
by a conditional jump to subroutine. A controller using an Am2910,

and Am2914 is shown in Figure 4-33.



91

Refining the CCU

DATA BUS (DB 0:15)

“Un 0103 1dnLURUT [9A3]-1YS1d Uy

!

1€~ 3131y

il

MO14.0  sig
d49  SNLVIS  INI
JOH1NOD _
$S3HAAV LX3IN L -O| 034 Ldi| yv9
WYHOOHJOHIIW OL
voLy
8, - %2019
—~ R ¥J01) |[=————— W3LSAS
A, £:080 0062wy
pI6IWY =
€, 0 SSVdAS
01:880 7 SNLVLS HOLV
ssavaay T
aniLnoy b’ |||._
L4NHYILNI fv t40 8 e
@ SLNdN)  JO~—~5—— 1S3N0D3H
S\K 0 WOYd " LdNYYILNI LdNYHILNI
. ONIddVW Z Z0
51:080 15L6ZWY By 7 HOL23A
HOL1I3A £0 318¥N3
) L1dNYYHILNI NOILONYH LSNI LSNI
[e)
b
\V
21901
7041NOD 304N0S £0, 3,

SN8 v1va WOud

H3.1S1934 NOILONYLSNIOHDIIW



Bit-Slice Design

92

DATA BUS (DB 0.15)

‘WASAS OOGZWY J0J 11UN [013U0D 1dNIIUL [JAI[-UIANXIS “ZE—p dandiy

1

=

1041NOD
SS3HAAV 1X3N ¥vO
WYHO0HdOHIIW OL YT ©0]03Y Lddl 2012
voLy \m ZOSNLVLIS  dABHILV)
8, 29, 404
A\ NdN! LNt L
S LONSYW S1NdN! INI fo= -~
H O N3 dHO  pI6ZWY
13 o
A
O— Z0Y¥OLI3A Btsnt s
£8a
,|A Oy b [ OIS d¥9 N3 ISNI [Or
£162Wy sia
4,2, L2, NI Sv9
S9 Y9 €9 9 g
w_ O_ ﬂ_ N_ —_ SIg Hvo
€80 ©0|03Y 1ddI dIY %2019
ﬂ\ L
~ Z0SNLY1S
o, |c0sa 7080 g —7¢ dAB HILVY
> —4 L0 %SYW L404
$1°080 51:8 80 IH._uu SLNdNI INI o J\m
b a.VOl‘o N3 dHO
5 2) b 3 pI6ZWY
ya WOud £ 318vSI0
7 ONIddVW & SFRRTTTY Vv
S1oea 15L62wWY 20 P
- Rl Z0HOL1I3A £0 LSNI |~—
4 —o{915 dyo N3 LSNI
sia M014.0
21901 INI SNLV IS N
I041NOD 3JHNOS

SN8 viva WOH4

L7

(o

SL1NdNI
1S3N03y
14dNYY3ILNI

%2070
W3 LSAS 0062

Si8
S1NdNI
1S3N03Y
1dNYY3INI

|

£0, T__

H31SI93H NOILONYLSNIOHIIW



Refining the CCU 93

<r DATA BUS (16 BITS) >

INSTRUCTION
REGISTER
MAPPING MAPPING
OE p—
PROM
OE PROM
(]
OTHER STATUS
) l
Co-n MAP Am2922
Am2910 cc CONDITION
lo.3 PL CODE MUX
MICROPROGRAM
MEMORY
Aa L
L PIPELINE
1# Q9 RecisTER
So-2 Vo2 ,
M,
07 Am2g14 03 4 g .
L8 IRPT o——
Po.7
%« +5V
8
INTERRUPT
REQUESTS

Figure 4-33. Computer control unit for microprogram interrupt system.



94 Bit-Slice Design

DATA BUS (16 BITS)

OTHER STATUS

Am2922
CONDITION

CODE MUX

INSTRUCTION
REGISTER
MAPPING MAPPING
PROM prom OF
+5V
o]
Y
712 N
Do.14 MAP
Am2910 cc
lo.3 PL
MICROPROGRAM
MEMORY
l
PIPELINE
4
1e =9 OE  RecisTER
Mo.7 Vo_z
So-2 lo-3 74
Am2914 OTHER
LB IRPT O—
I Po-7
= +5V
8
INTERRUPT
REQUESTS

Figure 4-34. Computer control unit for machine program interrupt system.



Refining the CCU 95

Machine Level Interrupt

A machine program interrupt system may test for an interrupt only
at the end of the microroutine for the current op code since the con-
tents of the instruction register will be destroyed. The existence of an
interrupt in this case would cause the vector map to output to the
system data bus.

Two procedures could exist. In the first, the vector map output
could in fact be a special op code, fed into the instruction register and
handled as any other op code. The microroutine for this special op code
would exist in the PROM memory, and a start address would exist for
the microroutine in the memory map. This is a relatively fast procedure
but requires space for the op codes and a larger control memory.

In the second, the vector map output would be processed by system
software and would be used to call up a machine level interrupt pro-
gram. The program would be executed as any other software program.
This is a relatively slow interrupt service procedure, with the advan-
tages of having no additional microprogram PROM requirements and
requiring no additional map space.

A computer control unit for machine program interrupt handling is
shown in Figure 4-34, constructed from an Am2910 and two Am2914s.
Note that this version does not require a decoder for the output enable
of the memory map. As shown, the OE ., must come from the micro-
word just as the instruction register load control and other system
controls.






Evolution
__of the ALU

The basic controller is well defined at this point in the design. If a CCU
is being developed, the next step is the development of an appropriate
ALU and the other related modules which will comprise the CPU of
the system as well as the interconnect to the main read—write system
memory.

Instruction Formats

The simple ALU shown in Figure 5-1 has (1) an ALU, with carry in and
function control coming from the CCU, and (2) an ACC register, with
load enable control coming from the CCU. This simple system could
support ADD, SUB, OR, EXOR, LOAD ACC, or PASS. The assump-
tion was made that data came in only on the A port of the ALU and
therefore that the instruction had the form:

Op Code Operand Address

Single address instruction

97



98 Bit-Slice Design

A V B
CONTROL
ALU 3
CARRY
out
COMPUTER

CONTROL
UNIT
IN
ACC
ouT
DATA-IN DATA-OUT OP CODE

Figure 5-1. Simple system.

This is only one of many forms that could occur among various systems
or within any one system.

There are often several formats for instructions in a system, of
which some of the more typical for direct addressing are

—op code with implied operand
—op code with single address
—op code with two addresses
—op code with three addresses

Literals, indexed registers, indirect addresses, base relative addresses,
register addresses, and combinations of these are ignored here.

Control Unit Function

As a computer control, the CCU must be able to direct the fetch of the
op code to the instruction register and decode whether or not part of
the instruction contains an address. If it does, that address must be
gated into the MAR, which will then be used to fetch the actual data
from memory. In the simple system being described, the op code will
be gated into the IR (instruction register) at the same time that the
address is gated into the MAR.

If a memory fetch for data is required, the decode of the op code will
produce the required microinstructions to perform the actual fetch.
Once all of the operands are available, the ALU function execution
proceeds. In the simple system being described, the fetch of the second
operand occurs in the same microcycle as the ALU execute.



Evolution of the ALU 99

PC and MAR

Involved in the above memory fetch operations are two registers, the
PC and the MAR. The PC (program counter) stores the address of the
next machine level (macro) instruction to be fetched from the program
area of main memory. The MAR (memory address register) contains
the address which is to be placed on the main memory address bus. The
address will be either that transferred from the PC register (instruction
fetch) or that loaded from an instruction (data fetch). In the SIMCOM
(simple computer) system, only the MAR connects to the address bus,
although both the PC and M AR could be used to supply an address to
the memory, at the cost of increased complexity in the bus structure.
Both the PC and the MAR are loaded from the ALU output as shown in
Figure 5-2.

Now assume that the program is executing an arithmetic ADD and
that address i is in the PC register. This is the address of the next
instruction to be fetched (see Figure 5-3). The PC register contents are
placed on the main memory address bus via the MAR, and the contents
at address / are fetched and loaded into the instruction register (IR) and
the MAR.

The MAR register contents (address j) are placed on the memory
address bus under the control of the CCU and the contents of the
storage location at address j are fetched and input to the data input part
of the ALU.

At the same time, the ACC passes its contents to the other part of
the ALU and the CCU sends a control instruction to the ALU. These
three events are coordinated so that the two operands arrive at the
same instant / = r_(z,. is some allowable error, some unit of time). The
ALU is ready to process them when they arrive. On the next clock, the
result is loaded into the ACC. The PC is incremented and execution
continues.

The design in Figure 5-2 uses the ALU to increment the PC register
and could place the result either in the PC register or in both the PC and
MAR registers. The MAR cannot input to the PC register in this con-
figuration.

Also shown is a connection to the ACC outputs such that the test for
<ACC> = 0 is possible. There are no other status outputs for the
ALU as yet. The test input is connected to the CCU, which is at the
moment considered to be an undefined black box.

With this design, the SIMCOM supports a basic instruction set that
includes basic arithmetic and logical operations as well as some mem-
ory access and branch instructions, as summarized in Table 5-1. INA
and OUT allow data to come into or be placed out of the system, via
the data bus, to an unspecified location. The arithmetic and logical



100 Bit-Slice Design

‘wsAs papuredxy

‘7—§ dandyy

b

934 ISNI

ﬁlllll

oaw

N3

Md

SN8 HAY —=—&¢

9y

sng a

yaav

1n0 viva

AHOW3W
IVNH3ILX3

NI Y1va

IOW

nad

N3

HVW
an

od

al

9l

N3
20V

a1

9l

snaa

0a

sna o

a

o/l



Evolution of the ALU 101

PC
] \
i+1 N j—-2
R r i
j+1
MAR /
TO ALY
PROGRAM DATA
AREA AREA

Figure 5-3. Single address operation of SIMCOM. The PC contains the address of
the instruction to be fetched. It transfers its contents to the MAR and then increments.
The MAR is used to address memory. The instruction (in this example) is brought out
to the instruction register (IR) and to the memory address register (MAR). The IR
contains the op code to be decoded by the CCU. The MAR contains the address of the
operand which must be fetched before the op code is executed.

operations and the LDA and STO operations assume that the op-
address format is processed as described earlier. The JMP and JMZ
assume that the PC is loaded with the address provided within the
instruction.

Improving ALU Speed

Current Instruction Execution

Referring to SIMCOM as encoded so far, the number of microcycles
required to perform the software operation B = A + B (where A and B
are memory location) is fixed at 9.

The operations involved are given in Table 5-2. <x> means con-
tents of location, <<x>> means contents of the location addressed by
<x>, and <>|<> means place left side of the equation into both
locations of right side. (The PC could have been incremented as a last
step in the routines.) This is suitable if all arithmetic requires memory
accesses.

Scratchpad Registers
In many instances, with emphasis on the cases where a high volume
of computation is performed, an arithmetic operation is performed on



102  Bit-Slice Design

Table 5-1 Basic Instruction Set
LDA, Addr. Load accumulator with contents of address (main memory)
ADD, Addr. Add accumulator and contents of address
SUB, Addr. Subtract accumulator from contents of address
OR, Addr. OR accumulator and contents of address
AND, Addr. AND accumulator and contents of address
XOR, Addr. Exclusive OR accumulator and contents of address
INA Input to accumulator (from data bus)
ouT Output from accumulator (to data bus)
JMP, Addr. Jump to address (GO TO)
JMZ, Addr. Jump to address IF accumulator is 0, <ACC> =0
STO, Addr. Store contents of accumulator at address (main memory)

the result of a former arithmetic operation or an operation may use the
same operands as were used in a former operation. In those cases
where the data is to be accessed several times or where the result of
one operation is to be used several times before it is to be stored into
main memory, the availability of scratchpad registers can be shown to

improve the system throughput.

Table 5-2 Software Operation B = A + B (Memory Addressing)

Program Level

Machine Level

Microcode Level

B=A+8B

LDA, MEMA

ADD, MEMB

STO, MEMB

1.

<PC> — <MAR> — ADDR BUS

<PC> «~<PC> + 1

<<PC>> — <IR> | <MAR>
(dual destination)

DECODE

<MAR> — ADDR BUS

<<MAR>> — <ACC>

<PC> — <MAR> — ADDR BUS

<PC> «~ <PC> + 1

<<PC>> — <IR> | <MAR>

DECODE

<MAR> — ADDR BUS

<<MAR>> + <ACC> — <ACC>

<PC> — <MAR> — ADDR BUS

<PC> « <PC> + 1

<<PC>> — <IR> | <MAR>

8. DECODE
<MAR> — ADDR BUS

9.

<ACC> —» <<MAR>>




Evolution of the ALU 103

If the operand data is already in appropriate registers, and if the
result is to be kept in one of those registers, the operation

Ry = R.-\ + Ry

is performed with three microcycles.
To implement this, one format for register operation is

Op COde Rs«:urn- Rl)vslinmiun
(3) (4) (4)

This format allows 256 different register op codes and 16 registers.
This format also requires that the instruction register be as wide as the
format (i.e., 16 bits in this example). (The decode of the op code would
prevent the MAR being used to perform a memory access if memory
addressing and register addressing are used in the same system.) The
CCU controls the connection of the register addresses to the scratch-
pad block via a MUX.

Generalized ACC

By using a multiport scratchpad block both source registers may be
accessed at once. By using the scratchpad block to replace the single
register ACC, 16 different accumulators are possible. The structure is
shown in Figure 5-4.

The complete microcode would be given as in Table 5-3.

If all instructions are required to be register oriented, the instruction
set could look like that shown in Table 5-4. As a variation, even when
any register could be used as the accumulator, some default or implied
addressing instructions are desirable for code compaction. These are
usually selected to be the most frequently occurring instructions such
as load from memory or increment. For SIMCOM, if the R, register
were the default ACC, the load and the store instructions would be-
come LDR, addr. and STO, addr. As an option, both implied address-
ing and defined addressing versions of instructions are often included
to permit the greatest power and flexibility in an instruction set.

In order to perform the register operation itself in one microcycle,
the system timing must be such that the instruction cycle is long
enough to allow the read register access, the ALU operation, and the
write register data and address setup.

Generalized PC
Another change can be made to advantage—the PC can be moved
into the scratchpad block (i.e., any register can be the PC register.)



Bit-Slice Design

104

*21n109311Yd1e wodnjnw dudWYILE 191s13aY

‘p—§ aandiy

m

H31S1934 viva
NOILONYLSNI STOHINOD —=
Eaceviireiphisll " AHOWIW
_ a2’ ss3vaav NIV
viva
{31 HYW
1531 5IQ
g ss3yaav
nao viva viva
a1 od -
SH31SI1934
v $S34aav viva
[
nv

AN

9l

91

A

o]}



Evolution of the ALU 105

Table 5-3 Software Operation Ry = R, + R (Register Addressing)

Program Level Machine Level Microcode Level

Ry = R, + Ry ADD, R,, Ry 1. <PC> — <MAR> — ADDR BUS
<PC> —~ <PC> + 1
<<PC>> — <IR>
— <MAR>

2. DECODE

3. <R.> + <Ry>— <Ry>
under CCU control .

This allows arithmetic operations to be performed on the program ad-
dress as is required in relative addressing, for example, where the PC is
added to a base register to find the actual address. Indexed addressing
and various other addressing structures are now feasible using high
speed register arithmetic. The resulting structure is shown in Figure
5-5.

Adding Flexibility

The scratchpad memory B port is connected to the B port of the ALL
to the main memory, and to the data output bus. The A port is connect-
ed to the A port of the ALU and also to the status-generating logic for
input to the CCU. Note that either the A port or B port of the scratch-
pad memory could have been connected to the data output bus.

Table 5-4 SIMCOM Register Instruction Set

LDR, REG, Addr. Load contents of main memory address into register
(2 word instruction)
ADD, REG,, REG, Add contents of REG , to REG ,, put results into REG,
SuUB, REG,, REG, Subtract contents of REG, from REG,,
put results into REG,
OR, REG , REG, OR REG, with REG,, put results into REG,
AND, REG,, REG, AND REG, with REG,, put results into REG,
XOR, REG ,, REG, Exclusive OR REG , with REG ,, put results into REG,
INR, REG Input to register
OUT, REG Output from register
JMP, REG Jump direct to contents of register
JMZ, REG,, REG, If REG, is zero, then jump direct to contents of REG,
MOV, REG ,, REG, Move contents of REG , into REG,

STO, REG, Addr. Store contents of register at main memory address




106 Bit-Slice Design

“SCRATCH PAD"
REGISTERS
N MULTIPORT P
MEMORY <
A ADDRESS A 5 B ADDRESS
TO MAIN
> D | ¢——— = MEMORY;
FROM MAIN
MEMORY A B
FUNCTION
ALU 1 FROM
J ccu

Your

MAR

i

TO MAIN MEMORY

Figure 5-5. Redrawing the structure.

Input MUX A

The A port of the ALU receives input from the data input bus or the
scratchpad memory A port: therefore these devices must be tristate.
Assume that all input devices already are tristate. This leaves the tri-
state requirement for the scratchpad memory output. By adding an
input MUX to the A port of the ALU and controlling this MUX from
the CCU, the tristate requirement for the scratchpad A port is removed

(Figure 5-6).

Output MUX
The ALU output is connected to the input port of the scratchpad and

to the input of the MAR register. Improvement is possible by allowing
the MAR to be loaded from either the scratchpad registers or from the
ALU output and allowing the main memory input and the data output
bus to share the connection. A MUX added at the output of the ALU
and connected to the data output bus under control of the CCU pro-

vides this capability.



Evolution of the ALU 107

A ADDRESS B ADDRESS
— REGISTERS —<
A B
DATA IN

S

S >——e INPUT MUX

A \ / B
Cour FUNCTION

SIGN ALU
OVR
ZERO Cin

s >— OUTPUT MUX

Your
DATA OUT

t

EXTERNAL MEMORY

MAR

Figure 5-6. Adding status flags.

The MAR can be loaded from the main memory by passing the data
through the ALU. The MAR can also be loaded from any of the
scratchpad registers for relative addressing or indexed addressing
without passing through the ALU. This has advantages, in addition to
the faster execution time, which will be demonstrated below. The
execution time to transfer from the scratchpad register to main memory
is also reduced by bypassing the ALU. (Note that in Figure 5-6 the
scratchpad A port rather than the B port was used to input to the
MUX.)



108 Bit-Slice Design

Status Lines

CCU testing of the ALU result should be more powerful than the
<ACC> = 0 test. The next addition to the ALU is the provision of a
number of other status outputs:

Cou carry out, C, . ,
SIGN Cn + 3
OVR C,, + 4V Cn + 3

ZERO D,=0,i=0,...,n—-1

These would be connected to the condition MUX of the CCU con-
structed earlier.

Shift and Rotate

While the ALU is capable of most operations, the ability to shift
right or left or to rotate right or left is a desirable feature. This can be
accomplished by the addition shown in Figure 5-7, where a shift reg-
ister has been added at the scratchpad input. The shift register is under
CCU control. External connections determine whether a shift or rotate
is being performed and what bit, 0 or 1, is shifted into the high or the
low order bit. A shift MUX will be needed for each side of the ALU,
which will also be under CCU control.

Control Bits

Each item added which requires CCU control adds a field to the
microinstruction format. The width of the field added is a function of
the amount of flexibility of the device. For a shift MUX, a 2 or 3 bit
field is required. The ALU so far requires a 3 bit function field, a
carry-in field (or a carry-in MUX control field), A address and B ad-
dress fields of 4 bits each for fixed register operations, MUX select bits
to allow the A and B register addresses to be supplied from either the
microinstruction register or the machine level instruction in the IR, and
controls for the A port input MUX, the ALU output MUX, and the
shift register. The microinstruction fields required by this version of the
ALU are shown in Figure 5-8.

Double Precision

The simple system under development has no multiply or divide
operations. To provide the capability for these operations, the ALU
must have at least one double precision register. For the system de-
veloped so far, this is provided by adding an extension Q register and
its own shift register. The ALU inputs to the Q register directly. The Q



Evolution of the ALU 109

R Ro
e | RAM SHIFT -
A ADDRESS B ADDRESS
S REGISTERS —<
A 8
DATA IN
S >—oti INPUT MUX
A \/ B
Co FUNCTION
s ALU
OVR
z Cin
F
S >— OUTPUT MUX
Yout
DATA OUT
EXTERNAL MEMORY
MAR

Figure 5-7. Adding the shifter at the RAM input.

shift register is connected to the output of the Q register. The Q register
output also connects to the B port of the ALU. To avoid requiring a
tristate register and a tristate scratchpad memory, a MUX is added to



110 Bit-Slice Design
ALU
OuTPUT A 8
A PORT [FUNCTION A.BMUX| Rpam
e oo SEMLUE)é:T MUX seLecT |CARRY INJADDRESSIADDRESS| ge\ ect | guirr e

SELECT

1 1 3 1 4 a 1 2

Figure 5-8. ALU portion of the microword (simple system).

the ALU B port input and the MUX is under CCU control. External
connections determine the shift or rotate operations on Q alone or Q

and a scratchpad register. The addition is shown in Figure 5-9.

MSB ; LSB 1y
RAM
RAM, RAM | o ] { ]
k) 0
S Q SHIFT
> 2 4
B 4 1/ 4
A ADDRESS 16 X 4 B ADDRESS l
SCRATCH PAD - <
4 DUAL PORT RAM 4 Q REGISTER
A B

olf\ ‘0' A A B
> ‘ ; Q
s INPUT INPUT -—<S
s MUX MUX
4(4 44
R (A) S(8)
Cour \/
SIGN o
OVR IN
F=0 ALY
G "
P <: ip.g INSTRUCTION TO CHIP
F
/’ 4
’f 4
S >— OUTPUT
OE > = MUX
1 a
Yout

Figure 5-9.

Am2901 RALU.



Evolution of the ALU 111

Additional Modifications

A few additional improvements can be made: First, adding a zero
input to the ALU A and B port input MUXs allows incrementing and
decrementing and PASS operations on both ports:

B+0—-B PASS
B+0+C,—>B INCR

Second, adding the A port of the scratchpad to the ALU B port input
MUX allows a fast multiply by 2:

A+A-> A MULT 2*A

Third, adding an output enable control and making the ALU output
MUX into a tristate MUX allows the ALU to share a bus. Finally,
adding two additional status outputs, carry generate G and carry prop-
agate P, allows fast addition using carry-lookahead if the ALU is as-
sumed to be a 4 bit wide slice. The result is shown in Figure 5-9 and is a
logical block diagram of the Am2901 bit-slice RALU.

Am2901

The Am2901C is twice as fast as the original Am2901. (Each increment
is used to indicate faster, more reliable, pin compatible devices.)

The microinstruction control required by the Am2901 is a 9 bit field
divided into 3 bit subfields.

Source Control

The selection of the operand sources via a 3 bit subfield allows the
combinations shown in Table 5-5. The combinations QQ, DD were
considered to occur too seldom and 00 was considered trivial.

Table 5-5 Am2901 Source Selection

Pairing Microcontrol
Bits 1,1, 1,
(Octal)

AQ 0 (equivalent to BQ, QB, or QA)
AB 1 (equivalent to AA or BB)

0Q 2 (equivalent to QO0)

0B 3 (equivalent to BO)

0A 4 (equivalent to AO)

DA 5 (equivalent to DB, BD, or AD)
DQ 6 (equivalent to QD)

Do 7 (equivalent to OD)




112 Bit-Slice Design

Function Control

The functions allowed are the simple arithmetic and logical opera-
tions. (AMD uses R and S for A and B to avoid confusion with the A
and B ports of the scratchpad.) The functions selectable with a 3 bit
subfield are in Table 5-6.

Destination Control

The more complex control is the destination control field. The 3-bit
field must select among up, down, and no shift for the RAM shift
register, choose if the scratchpad memory is to be loaded, select among
up, down, and no shift of the Q shift register, choose if Q is to be
loaded, and select the output MUX for ALU or scratchpad. Since some
operations imply others, Table 5-7 simplifies the control selection.

Interconnection

The Am2901 is a 4 bit slice RALU intended for two’s complement
arithmetic and active high data. Any number of slices may be con-
nected to construct a CPU of any multiple of 4 bits width.

Figure 5-10 shows a 12 bit CPU connected using the C;, and C,,
pins in a ripple—carry configuration. Figure 5-11 shows a 16 bit CPU
connected using the G and P pins of the Am2901s and an Am2902A, a
carry-lookahead unit. The execution time is considerably faster using
carry-lookahead. The technique of lookahead will not be discussed
further.

Table 5-6 Am2901 Function Selection

Operation Microcontrol
Bits I 1,1,
(Octal)

R+ S 0

S-R 1

R-S 2

RvS 3

R NS 4

RAS 5

Ry S 6 Exclusive or
R=S 7 Identity




113

Evolution of the ALU

‘gS7 pIemo) st umoq ‘'gSIN premo) st dn 'sindul g Aq passalppe Jasibas ‘g
-aye1s eouepaduwi-ybiy ay) ur s1yd1ym ndino ajels-aaiy) e 0} pajdauuod Ajjeussjul Indut 1 | B St uid Yiys ay) ‘Ajjeoutos|3 ,, e1ed j,uop,, ‘X

o X 4 °NI | BUON X g<42 dn L H H H NNVY
‘o °Nnt 4 NI 4 D<bz dn g<d¢ dn 9 17 H H NOAVY
X ‘0 °NI °4 4 auoN X g<24 umog S H 1 H awvy
';NL ‘D °NI °4 E| D<z2o umog g<g/d umog ¥ 7 1 H  aOWvH
X X X X 4 8UON X g<d4 ©®UON € H H 1 JNVH
X X X X v 8UON X g<d4 ©®UON 2 1 H 1 VWYY
X X X X 4 8UON X BUON X ! H 1 1 dON
X X % X 4 D<d4 8UON  B8uoN X o 1 1 1 34O
‘o 0 °‘wWvd °AWvd indinQ  peoT Wys  peoq Bys 8pod  °p ‘1 °| ouowaup
A 1210
Jayius SRS uonoun4 uoljpuny 8p020IOIN
0] Wvd '934-0 WvY

|0ju0D uoneunsaqg L06cwWyY L-§ 9lqel



Bit-Slice Design

114

*(A1aed 9[dd1l) SUOIDAUUODIUL NJD NQ-IA[IM], 01 —S 1Ny

£:05 6°vp ne,
TOHINOD z
1nd1no
v A4 vy A vA voLy
N2012
10 dp do I0p
30 0=4 10 0=4 30 0=4
INIW3dWOD
£y &y p— €y }—— N szasw
HAO HAO }— HAO ——= A
NI u w p+u u peu u p+u 1no
s b 1062wy o} 9 106ZWY 9 o) 106ZWY 9 " uuvs
Opvy ~=——a Oy CWvy Owvy Ewvy Owvy Envy -
WYH | no1Lo3NNOD
up 14IHS
oo ] Oc nc oc mo oc nc
6 Vé
V4
NOILONHLSNI 'y v A v A v A
ssavaav 8 'v £
€0g Lvg u-eg

8SW

457 -



115

Evolution of the ALU

*(PRaYBYOO[-A11BI) SUOIIIIUUOIIUT Nd D) 11G-UINXIS

"11-§ dandiy

—c ]
—o0l d
——1 Y0 z06zwy
09 Og o ‘o !4 Al % 24 280y €9 td
T 73 11 1Y
A A A A
v y \ﬁ v v
voLy
6 ¢ QO -, % %
0=4 0=49 d 0=49 d =
95 d 0=4d9 d 205
nu (S n& = ﬂn_ mu —— N
HAO |— HAO — HAO HAO [——= A
ug p+uq || Yy v+uq -] Yy viug L] Yy vHUg L 1NOg
NI-AHHYD 106ZWY loszwy tooaty Kb
oYY ~e—ef PWVH Cwvy ‘wvy ‘wvy oWvy ‘Wvy Owvy EAVH |=—e Sty
op 0p o 0p to 0p €p 0p £p f=— Sip
o !
99 'ssayaav e ‘v L 4 ¥ o
v v v v
n.cO ivqg :.wQ m_..N—O asw

as7







__Anthmetic

The ALU
and Basic

Further Enhancements

If we alter the Am2901 architecture as follows then we have the
Am2903 or the AMD Superslice® RALU shown in Figure 6-1:

1.

add connections and controls to allow for vertical expansion of
the scratchpad registers;

. rearrange the Q shift and Q registers so that the ALU loads into

the Q shift register directly;

. move the RAM shift to the ALU output;

allow data to be input on the ALU B port instead of the A port;

S. allow data to be output from the B port of the scratchpad, which

requires a tristate buffering of that port;

allow the data to be input directly into the scratchpad memory,
bypassing the ALU;

share the G and P pins with SIGN and OVR;

enable the device to know if it is the most, least, or middle
significant slice, to allow arithmetic shifting; and

increase the possible functions which the ALU can perform.

117



118

Bit-Slice Design

TAIN
Apg-3 ., A oA 1; ) B
L
e ADDRESS ADDRESS 77—
RAM WRITE J( o———————
ENABLE cP WE
A B = T A
al DATA OUT DATA OUT |
g 2 2 L - J
an 14 Am29203 ONLY
LATCH E |=— cp
Am29203 _|
ONLY
4 e
OEg
© —
4
ya
DAg_3 (NOTE 1) . o > £
= 74 I DBy_
Ea
(o MUX S f=——1,
4
% L, //
7] 4 Aa
G/N
<— \\Ro_;, V So—3 .
<—-P/OVR \ ALy { i
< Fo—3 /
Cn+a — s10g
//a 3
$103 ‘ 010,
&3 Aau || a S
SHIFTER SHIFTER
V
Q105 Aa 'f‘
OE cp >—— &
DY Y REGISTER
4 a
TEN L L
/ y
D p————
& ‘ 0
LSS .
INSTRUCTION L
RECODE (NOTE 2|
E3}——o .
WRITE/ . cp
gg - Vee
)
z
— —— Am29203 aads
L~ "ToNLY
- ad

is i i 203.
Notes: 1. DAy.5 is input only on Am2903, but is I/O port on Am29
2. oﬁo,o?ngzoa, zero logic is connected to Y, after the OEy bulffer.

Figure 6-1.

Am2903 RALU.



The ALU and Basic Arithmetic 119

In addition to the 9 bit instruction input, various other input controls
are needed:

61_5\- Output enable for the bidirectional Y output

OE, Output enable for the bidirectional DB output

E, MUX select control for the ALU A port input

Ly One of the instruction lines—MUX select control for the
. ALU B port input

W, Write enable for the scratchpad, used for expanded

memory (all slices are tied to WRITE/MSS of least

- significant slice)

LSS LOW = least significant slice and enables WRITE as
output; HIGH = WRITE is an input

WRITE As input, HIGH = intermediate slice and LOW = most
significant slice

| . Instruction enable

oy Carry in

There are three ways to input or output data:
Yoy Data I/O pins

Dy o Data I/O pins (D, port or Dy port)

There are three status pins:

‘G and SIGN Carry generate or Y, .
Pand OVR  Carry propagate or C,,.,~+C,, .5
G4 Carry out

The most significant slice (MSS) produces the SIGN and OVR sig-
nals and IS and LSS devices produce P and G. A 16 bit carry-look-
ahead RALU is shown in Figure 6-2.

Finally, there are the scratchpad pins:

A()—ﬂ
Address select
B,

The Am2903 is more powerful than the Am2901. It has a richer
instruction set, including nine special functions which use user-unac-
cessible internal controls to facilitate operations such as two’s com-
plement multiply, sign extend, and normalization. It can be used with
an expanded scratchpad memory so that the RALU is no longer limited
to 16 registers. The ability to identify a slice as to its significance
contributes to the instructional power available. The Am29203 will
feature additional special instructions (BCD arithmetic). .

Like the Am2900 family in general, the Am2903 is a low power
Schottky device with tristate outputs. The Am2903 is in a 48 pin
package. The Am2903A and the Am29203 are ECL internal and TTL
external for higher speeds.



Bit-Slice Design

120

‘prayeyoo[-A1ied yliim NdD 1q-uddixi§ 'z-9 aindiy

as1 asw
20,
ugy vZosZwy
Yo 0g:0g9 X+ugy lg'lg A+ug 2429 T+ug
L %
v Az ﬁ v Az v Az v
M A am o A IM A am A
= L= :UI Z - :U[ Z T —— cU.I ¥ - F'. :O b4
s -] $$1 4’0 $s1 439 Ss1 HAO f—
SSWIM A SSWim FLAD«» SSW/M ..P SSWIM o
S+ S+ S+ v+c0 ——
~——1 Og £g |—————e] Og g Og €g Og ﬂm t—a
~——={0p £p 0p £p Op €o 0o fo ="
coszwy g co6zwy g coszwy g e06IWY g
v v v v
| | I |
80 va ga va 8d va 8d va
v v ) v v v *\ v \*\ v
S3TYVYN3 P
‘SN NOILONYLSNI ! TE g
® ® -
v Sna ss3vaav v
. 2 -& \\
8 sna ss3yaav b



The ALU and Basic Arithmetic 121

Instruction Fields

The basic 9 bit instruction field is broken up into subfields differently
from the Am2901: I._, identify the destination, shifting, etc., I,_, iden-
tify the ALU function, and I, is a MUX select. I ,normally appears with
E, and OE; as a 3 bit source select control field.

Instruction Set Extensions

The basic arithmetic and logic function set of the Am2903 has several
extensions to that of the Am2901, including all HIGH and all LOW and
the logical NAND and NOR functions (Table 6-1).

Shifting

There are two types of shifting possible owing to the identification of
the significance of the slices. The logical shift shifts through all bit
positions. The arithmetic shift shifts around the most significant bit

Table 6-1 AmM2903 ALU Functions®

I, I, 1, l, Hex Code ALU Functions*

L L L L 0 l, = L, special functions
lo=H, F,=HIGH

L L L H 1 F=S-R-1+C,

L L H L 2 F=R-S-1+C,

L L H H 3 F=R+S=C,

L H L L 4 F=8+C,

L H L H 5 F=S+C,

L H H L 6 F=R+C,

L H H H 7 F=R+C,

H L L L 8 F, = LOW

H L L H 9 F,= R, AND S;

H L H L A F; = R, exclusive NOR S,

H L H H B F; = R, exclusive OR S;

H H L L C F,= R,AND S;

H H L H D F, = R,NOR S;

H H H L E F. = R, NAND S,

H H H H F F,= R, ORS;

*6, 7. 8 require |, = LOW

L, LOW; H, HIGH; i = 0-3.



122  Bit-Slice Design

position, i.e., the sign is undisturbed. The Am2903 data sheet pro-
vides a detailed table for the destination—shift control. Note that the
source—ALU and destination control tables are valid only if

I, +1I, + L+ 1, +1)I.=1

For the case

—II)TI_I'.!_I-:%T-ITE.\' =1
the special functions override the normal chip operations, with I._, as
the function select control field.

Three-Address Operation

The Am2903 may be used to perform a three-address operation. The
given A-B addresses are used as the source addresses and a third
address used as the destination. The second and third addresses are
input to a MUX whose selection is under clock control such that the B
address is stable for the read and the C address is stable for the write.
The third address must be in a register. The actual WRITE takes place
on the rising edge of the clock. See the Am2903 data sheet for control
details.

Sample Operations

Some operations will be examined for the two RALU slices, the
Am2901 and Am2903.

Increment
It is desired to increment a register and ar the same time output its
original value:

R'y«~ R, + 1; R ,—out

Assume that the register is R ,; and that it has been previously loaded
with a value.

Am2901 Version

The Am2901 microcontrols are derived by examining each subfield
table. The A and B addresses will both be F,,. The only way to output
from the scratchpad is to select A with the output MUX. This leaves
the B,0 pair as the source control; therefore I,I,1,is set at 3,. The ALU
function is add or increment; therefore I,1,1,is set to 0,and C set to 1.
The result of the ADD is to be passed around from the ALU output F to
the RAM shift register and then to the scratchpad memory, to R ;. This
is the destination control F—B, A—Y; therefore 1,11, is set at 2. The
complete microword for the Am2901 is



The ALU and Basic Arithmetic 123

I, I, I, CyAyA,A A,B; B, B, B,

0O 0 O0/jO0 11 1 1 1 1 1 111 11

The data flow is given in Figure 6-3.

Am2903 Version

The same problem approach is used with the Am2903. The only way
to output directly from the scratchpad is via the DB, path, which
requires OE, be held LOW. The ALU will add A + 0: therefore
I,I,LI, will be set to 6,,, C,, set to 1, and [, set to 0. The A port input
MUX select E , is set LOW. The A and B addresses are set to F,
assuming R, is in use. Since Y will be used to input back into the
scratchpad, OE, = LOW and WE will be driven by WRITE/MSS. The
complete microword for the Am2903 is

OEyA;A,A AyB,; B, B, B,
O 1 1 1 11111

The data flow is given in Figure 6-4.
Byte Swap

A 16-bit byte swap exchanges bits B,,-B, with B,-B,, in order and
vice versa:

Assume a 16 bit ALU (4 slices) and that the register in question is
R
Am2901 Version
The Am2901 microcode solution can be constructed by taking ad-
vantage of the fact that a shift up is equivalent to multiplying by 2. If
the result of an add of R; + R,; is shifted (prior to storing the result)
into R ., the effect is a 2-bit rotate, assuming that (1) the high order



124 Bit-Slice Design

[_ ————————————————————————————— -
|
MSB g { LSB 4,
RAM | RA 7
3 | RAM Mo ‘
| SHIFT Q3 Qo
. Q SHIFT |
1 L
! 8 4 y 4
e ]
A ADDRESS 16 X4 B ADDRESS
| |
>—#—| | SCRATCH PAD T e arend
— =3 ] _IDUALPORTRAM;_ | "4 _ Q REGISTER
 AS<_ B
B
|
-: 4 4 | ﬁ_
________ — (S -
I HE
: Dln 0

e e e e e e e

R (A
Sous (A)
OVR
F=0
G
P
________ — «r

S > \ ourpur
OE >— \\MU"
i
Youi
Figure 6-3. Am2901: Increment a register and output its original value.

input/output of the RAM shift is connected to the low order input/out-
put of the RAM and (2) the carry out C, ., is connected to the carry in
C,.- Since we are selecting source operands as A, B, adding, and shift-
ing, 2F—B: the microword is

IN I' I(i I.') I-l I:! I:Z ll I() Cin A:lA'.’AlA()B:l B:!BlB(l
1 1 1/000001/Cy I I 1 11 1 1 1

The microinstruction must be repeated four times to cause an 8-bit
rotate, for a total timing of four microcycles of approximately 165 ns
worst case minimum (dependent upon the actual hardware).

Am2903 Version

The Am2903 microcode solution is approached the same way. The S
shift is connected for rotate as was the RAM shift of the Am2901, the
carry out is input to the carry in, and an add is performed. The com-

plete microword is



The ALU and Basic Arithmetic 125

Lo I; Iy L Iy L, T ELT, EyC,
1 00 1|0 0 I 1| 00 0OC,,
OE\'A:i A2 AI Au B:i B'_’ Bl Bu

o1 11 111111

Am290! Hardware Version
The byte-swap operation can be performed faster using additional
(such as Am251.S240/244) tristate buffers (select noninverting). The
Am2901 Y outputs are gated out to the buffers, which in turn input to
the appropriate D, inputs of another Am2901. The operation per-
formed by the Am2901 in this case is to output from the scratchpad,
Y—A, and to pass the D, input thru the ALU and back into the
scratchpad memory, F—B. The additional hardware allows the byte
swap to be done in one microcycle. The microword is
L L: L

‘

010

I.’- I-l 13

0 0O

Ia 15 Iy

2 Cin"'
1 1 1

0

Am2903 Hardware Version

There are two ways to perform a hardware-assisted byte swap using
the Am2903 and the Am25L.S240/244 buffers. One approach is to use
the D as the output to the buffers and to use D, as the input point.
This is the relatively slower approach, since the D, input passes the
data through the ALU and back to the scratchpad.

The other approach uses the Y port as the data input, which pro-
vides a data path directly into the scratchpad. This method avoids the
propagation delay of the ALU, shift register, tristate buffer, and input
MUX. The microwords are

I, I, 1, I,|1, I, I, I, |E I, OE OE,|N,
D o a
0

(=N =1

-4 3 AR AT A n
,. 001 1|10 0
Y1 11 1|Xx X X X| xx Xl 1

The basic difference is the OE  control.

Arithmetic—General

The Am2901 and Am2903 perform two's complement arithmetic.
Two’s complement notation is a weighted binary code, where the sign



126  Bit-Slice Design

bit (most significant bit) has a negative weight. For example, for an
8 bit system 37,, = (00100101).,, computed as

—0x%27 + 0426 + 1%25 + 0%24 023 + 0222 + 0#2! + 1x20
=32+4+1
= 3710

For the same system, —37,, = (11011011), is computed as

— 1527 + 1426 + 025 + 1424 + 1523 4+ 022 4+ 121 4+ [%20
= —128+64 + 16 +8 +2 + 1
= “3710

The negative number encoding can be formed by logically comple-
menting all bits and adding 1 to the encoding of the positive number.

The advantage of the two’s complement number system is that there
is a single zero. The numbers are normally considered to be binary
fractions, so that a positive number is less than 1 and a negative
number is greater than 1.

Addition

Addition is performed as a straightforward binary addition, with the
sign of the result dependent on the signs of the operands.

For two positive numbers the sign is positive, and for two negative
numbers it is negative. A check should a/ways be made for overflow,
which is possible when the sums of the magnitudes exceed 1. The
Am?2901 and Am2903 both provide an overflow pin

OVR = Cn +-1 AV‘ CM 3

to allow status checking.
When the two operands have opposite signs, the sign of the result is
always the sign of the larger.

Subtraction

Subtraction is processed in the same manner as addition, i.e., com-
plement the subtrahend and add. Both the Am2901 and Am2903 pro-
vide two subtraction operations, A—B and B—A.

Multiplication .
The most difficult of the arithmetic operations so far is multipli-

cation.

Unsigned Binary
To perform B X A in two’s complement, where the numbers are

either both unsigned or both positive, the procedure is the same as for
binary multiplication. The multiplier is examined bit by bit righ_t to left
(least significant to most significant bit) to determine if the {nult.lpllcand
is to be added to the partial result. If so, the multiplicand is aligned so



The ALU and Basic Arithmetic
i 5
o5 ., ' A DMA:N"I"_W,: ) B
= g I ADBRESS 7/ ADDRESS .
| RA/M WRITE |< o—
| / ENA\BLE o——cp WE
A / By CE=E=s b
4 /| DATA OUT DATA OUT | JO——————
1 ] C I 4
| /] dl 141 Am29203 ONLY
I : f
cP——-] E LATCH LATCH | € }=—cP
Am29203 ——l\ | 1
ONLY 3
N /L’ai al
f p s e s — e OEg
5 ' o <3
1 | .,
DAg._3 INOTE 1) 2 1 | o 7 &3
B 114 l ] CPo-3
& | 7
(> } s mux [ MUX S =1,
q
| — - X
| qal Aa
S | G R N\
<— t Ro 3 0-3
P/OVR I \ \ / Cn
< t \ Aawvu —
e i AN Nt 3 S
Cisa \—‘— S10q
l Pe £
| ! |
$10, | } 010,
taty || Q
&3 | SHIFTER SHIFTER &3
L
Q104 | i/a 'fa
& }
— |
| Q
g” ! P > RecisTeR
I, - l
1EN al al
Oo— — g d
lo-ls ¢
D—+—- [ ] KS
ss
INSTRUCTION | © 2ero | Yo-3
DECODE (NOTE 2}
E3——o o
WRITE/ cp
MSS e —_—
3 s VCC
2 . —_-—
=y REoRls GND
—_
) s

Notes: 1. DAg.; is input only on Am2903, but is I/O port on Am29203.
2. On Am292083, zero logic is connected to Y, after the OEy buffer.

Figure 6-4.

Am2903: Increment a register and output its original value.

127



128 Bit-Slice Design

BXA UNSIGNED BINARY
77 1001101
X 11 *0001011
847 1001101
1001101 IN FIRST POSITION
0000000
N ND P

Megpeplps IN SECOND POSITION

0000000 \
0000000 IN FOURTH POSITION

0000000
0001101001111 512
=L ]]
256 64
WEIGHT — 64 8421 8
4
2
_1
847

Figure 6-5. Unsigned binary multiplication.

that the least significant bit of the multiplicand is under the multiplier
bit’s position, as shown in Figure 6-5.

If the bit is 1, add the multiplicand; if the bit is 0, add zero. The result
of an N bit multiply is at most 2/ bits.

Multiplicand Negative

When the multiplicand is negative, B#(—A), sign extension of the
multiplicand is used to form the first partial product, maintaining
the 2n length of the magnitude. Each time the multiplicand is added,
the sign extension form is used. The sign of the multiplicand is the
sign of the result.

Multiplier Negative

When the multiplier is negative, (—B)*A, the multiplication pro-
ceeds as for the unsigned or both-positive case, except that at the end
the two's complement of A, the multiplicand, is added aligned on the
binary points and not by placing the least significant bit of A under the
sign bit of B, the multiplier.

Both Negative

Where both numbers are negative, the multiplicand is sign extended
and added as for the multiplicand-negative algorithm. At the end, the
two's complement of the multiplicand is added, properly aligned as for
the multiplier-negative algorithm.

Result
The point of reviewing the various cases was to produce a common

algorithm (method I, Flores, Computer Arithmetic): (1) the leftmost
bits are a function of the sign of the multiplicand; (2) partial product



The ALU and Basic Arithmetic 129

addition is required with alignment; and (3) the two’s complement of
the multiplicand is added at the end if the sign of the multiplier is
negative.

Multiplication with the Am2901

To implement the above algorithm using the Am2901, the bits of the
multiplier need to be examined one at a time. To perform the addition,
shifting down is necessary to maintain alignment. To conditionally add
the multiplicand or 0, control of the source—-operand pair (A,B) or (A,0)
is required and a method of conditional subtraction is needed.

The functional diagram of the multiply operation is given in Figure
6-6. The actual schematic of a 16 bit Am2901 ALU is shown in Figure
6-7.

The additional hardware provides the following connections:

I. When Q is loaded and after each instance when it is shifted, Q, is
inverted and connected to a MUX which is controlled from the
CCU. Under multiply the MUX selects Q,: under normal
operation the MUX selects I,. Q, operates to control the source

operands so that
Source

Q, Q, Pair

0 1 B+0
1 0 B+ A

2. When R is shifted down (R, is any scratchpad register), RB,, is
shifted into Q, of the most significant slice.

RAM REGISTER A ‘ RAM REGISTER B REGISTER Q
MULTIPLICAND PARTIAL PRODUCT MULTIPLIER —

LOGIC
R S

ADD PASS

ALU CONTROL

LOGIC
F

Figure 6-6. Am2901A Multiply functional diagram.



Bit-Slice Design

130

‘Aa1ed d)ddu—Ajdninw 11q-9| 10j SUONdIUUOIIAUL siy1oadg  *£=9 dandy

N W31SAS OL AV13Q v+a| o '
> . saav :'1$19313S 0+8 1 0
[ / WHLIBODTV AdILINW aav | o1 | %
= \ HAO Atd =
A A A A EUg AT U ALY = Bvy
— ) v v v
" 135 ] A A A A
XNW N
%0="
|
6 6 6 6
oo \\ \\ \V \\
| | | |
2z
0=4 0=4 0=4 0=4
HAO }—— HAO |— HAO —— HAO voLy
) X S— ey fb—— £y
MO 1062wy 1062wy 1062WY 1062wy RET
V :U 14 CO CU q.r_o CU v.cQ CU v-CU
hDOO
OWvy fwvy Onvy twvy Owvy Swvy OWvy Eavy .l..Q—l
—
%0 fo %0 fo % o %0 o
—_——
b
q\\ v\\ q\\ \ﬁ
a a a a



The ALU and Basic Arithmetic 131

3. When R, is shifted down SIGN 3+ OVR is shifted into R of the
most significant slice. This is equivalent to

RB:R = Fti_v Cu +4 AVL Cn +3

The Algorithm
The microcode algorithm is as follows:

Clear R R <0

Load multiplicand into R, R ,<multiplicand

Load multiplier into Q Q<«multiplier (Q, can be sensed)

If not done, add, then IfQ, =0, Ry—(Ry, + 0)/2: Qe=Q/2
shift Q down and IfQ, + I, Ry—(R,; + R,)/2: Q—Q/2
shift R,; down Repeat loop until counter = 0

If done, add, then IfQ, = 0, Ry«Ry/2: Qe—Q/2
shift Q down and IfQ,= 1, Ry—(R,; — R/2: Qe=Q/2

shift R ; down

The result is across registers R, and Q, and the result is sign extended
to produce the proper number of bits so that multiplication with any
two 8-bit two’s complement numbers always produces a 16-bit result.

A sample 8 x 8 bit multiply is shown in Figures 6-8 and 6-9. Figure
6-9 shows the step-by-step walkthrough of the problem. Sample
microcode is given in the Am2900 Family Data Book and the 2900
Family Study Guide.

Am2903 Multiply

Unsigned Multiply

The Am2903 has unsigned multiplication implemented as one of its
special functions. To perform multiplication, zero out the RAM register
which, with Q, will contain the final result. If it is not already present,

1.1001101 - 51
1.0001011 -117
1111111111001101 + 5967
M1111111001101|0
0j000000000000QJ0O
111111001101j000
0j000000000O0|00OO
0j000000000j00O0OO0O
0/00000000J00O000O Figure 6-8. Example: 8
1111101110011 11 X 8-bit multiply two's
00110011 "“CORRECTION" complement (B = —b,
001011101001 111=<+———RESULT A =-a).



132 Bit-Slice Design

11001101 R,
10001011 R.—Q
00000000 Ry,
11001101 Rp +R, 1
1MM7001 101 — To Qg
11001101 R, +R, 1
FROM o100 —
F3V OVR 00000000 Rp + 0 0
To RAM g, M1o011001 —
11001101 Ry +R, 1
1MMo111000 —
00000000 Rp+0 0
111170111000 —
00000000 Rp + 0 0
MMr10111l0 —
00000000 Rp+0 0
Mitio011h —
00110011 S=Qp=1.Rp-R, =Ry + ﬁf

oloo1o01110 —

Rp Q
00010111 01001111

Figure 6-9. Walking through the Am2901A algorithm. The Am2901A algorithm takes
advantage of added hardware to eliminate conditional jumps and therefore improve
speed and reduce microcode.

load the multiplicand into another RAM register. Load the multiplier
into the Q register. The shift connection should tie the LSB (least
significant bit) of the RAM register (S,) to the MSB (most significant
bit) of the Q register (Q,) of the most significant slice.

The actual microcode is two microwords—(1) load the Am2910
counter with the number of bits minus 1 (for 16x 16, load with 15) and
place the multiplier into Q, and (2) use RPCT for the Am2910 to repeat
the actual multiply operation.

Two’s Complement Multiply

The Am2903 has two other special functions which enable multipli-
cation of a signed number. Two's complement multiply requires three
microwords for any width multiplication.

The same initialization is required, with the multiplier being piaced
into the Q register. The counter in this case is loaded with the number
of bits minus 2 (for 16x 16, load with 14). The repeat loop instruction is
the same as before. The added step is effectively the sign bit **correc-
tion”’ which was the last step in the Am2901 algorithm. The required
interconnect of the slices is the same as before, with the addition of the
Z status line tied to C;,.



Tying
the System
__logether

The two basic building blocks of a general 16 bit system—the CCU,
including the firmware interrupt controller, and the RALU—have been
defined in previous chapters. Various other devices are available in the
Am?2900 family to complete the basic CPU that has been used through-
out the text.

Expanded Memory for the Am2903

The Am2903 is designed to be interconnected to the Am29705, via
decoders, in order to expand the basic 16x4 scratchpad memory. The
Am?29705 is a true two-port 16x4 RAM memory which can operate
identically to the Am2903’s own scratchpad. A logic diagram of the
Am29705 is given in Figure 7-1. (The Am29203 uses the Am29707.)

By expanding the A,B addresses, scratchpad memory may be added
in increments of 16 registers of the equivalent width of the ALU. An
expanded memory interconnect diagram is shown in Figure 7-2 (taken
from the AMD data sheet).

MUX Requirements

In the course of examining the various arithmetic and shifting algo-
rithms that any given system is to perform, including those few exam-
ined in this text, the designer will find it necessary to be able to vary (1)

133



134  Bit-Slice Design

DATA IN
A 16 x 4 B
ADDRESS " RAM = ADDRESS
A OUT WE B OUT
WE 1T ——\
WE_2- —o_} {/
LATCH |~ LATCH ——J
&—LE
OE-A— ——DOE-B

YA YB
Figure 7-1. Am29705 block diagram.

the way that the RALU RAM and Q shifters interconnect, (2) the value
of carry in, (3) and the source of the carry out status bit.

The carry in bit could be (1) from a field in the CCU, (2) from the
ALU C,_, (for rotate-by-add or for multiple word precision algorithms),
or (3) from the ALU Z status line (for the Am2903 multiply), for exam-
ple. The carry out bit could be sourced from (1) the C,,,, of the RALU
or (2) the RAM, (or S,) output of the RAM shifter.

The shift and the rotate interconnections are determined by the par-
ticular variations which any given design is to implement. RAM,
(Am2901) or S,,(Am2903) might require connection to C,,,, RAM, (S,),
Q. (extension register shifter), and ground or Vcc or both. Q, might
require a similar flexibility of connection. RAM; (S,) and Q, would
require complementary connection capability.

In each of these cases, the most obvious solution has been to employ
multiplexers with the microinstruction supplying the appropriate selec-
tion for any desired connectivity pattern. The Am2904 is designed to
replace the carry in MUX, the carry out MUX, the RAM, and RAM,
MUXs, and the Q, and Q, MUXs. The Am2904 was developed to
reduce the required SSI and MSI support which occurs in typical CPU

designs.



135

Tying the System Together

"SSaIppe D Y1 Aq pa1o3[as uonedo| ay ol eyep indul ayy usodap uayy

[l1m 3s|nd QLM Y "SDUI| SSIPPE UOHEUIISIP-D) dY) O PAYINIMS SI SSAUPPE g VY 2Y) pue ‘saydig|
[Luaaiul 3y Ul pjay e BIEp g A PUt VA 34l ‘M Q7T S03 3jqeuad yoie| ay) uayp ‘HOIH S d|qeud
yaie[ 3yl A[iym sindino g A Y1 01 SSaIppe g ay1 wody pue sindino v A Y1 01 SSAIPPE y Iyl WOoLj peal
st ejeq Alowdw $SUPPe-32IYl 11q-p AQ pJom-p9 Y "A1owaw p Aq p9 ssaippe-2a1y]  ‘z-L dndiy

1nd1n0 8 1nd1n0 ¥
—— .-IIFJ
Cga"" Oga Eya " Ova
i m
| tIm
= [vowveo, =0 9130 v 30—
_ 5 » AP '} 01 v Oy 32 3404
€
- n ap— —t'e _«
XY B o —4 %8 Oyp{
829 £a¢g'a %% ER T
SSIv0Qyv \m
NO!LYNILS30 D7} = 7
.m- IM
a8 30 v 30>
4 ve 2 ] 01 vjo
Lo £y bt
Ty —{ve g :
1 v
oul.;: 3 L1 d1g ly ERCLLE]
[ vt 3 ol | {og Oy 3 1404 Vv
FO0g—{81 &« AL (T Lots 5 uvl_
b "
lg—jez C A Loz, » -
g —J8t h .W 8 — Sy
Cg—lov " W o> m vi—ry
Lam —AYA =
9930 v 3010 2
(g 01 vjo
z Cyj 1
L] N‘
- 1
$SIu00V —1e ‘v
354N05 8 7] |4 0g Oy
'am |_ss3waov
304N0S'¥
Camlgy e Oga Cya =** Oya R
= 830 v 30
LTy - tg 101 v
v o
/Y s Ly Cy
» AP lg
sg—o 3 : S0L6ZwY Iy Ty
0 X AP “1tle Iy ty
2 O 0g oy oy
3 'am =
357nd
€920'q0
a
1NevN) 90 a0, ILium
1608 1NdNI ¥1va 318vN]

HUV



136  Bit-Slice Design

Status Register

In the preferred architecture, the one being emphasized throughout this
text, a status register is used to hold the status produced by the previ-
ous microinstruction (such as the ALU status outputs) for use in de-
termining the next microinstruction address (‘‘branch on result of pre-
vious’’). The status outputs of the RALU as well as certain other
condition MUX inputs are considered to be microlevel status inputs. A
sophisticated architecture may also have machine level status, those
bits to be tested by the machine level instructions. A machine level
status register is necessary in this case, and it must be settable at the
individual bit level. The Am2904 includes both the microlevel and the
macro or machine level status registers and provides the bit set and
certain testing capabilities to further reduce the SSI-MSI support re-
quired.

Am2904

Figure 7-3 diagrams the interconnect required between the Am2904
and an array of Am2903s. A similar interconnect is required if the
ALU is formed from Am2901s. Figure 7-4 presents the block diagram
of the CPU that has been under discussion. It includes the IR (instruc-
tion register) connected between the system data bus and the mapping
PROM and also shows its connection to the A,B address selection

S10o
[ S10; S10g
Ql0,
QIO |- Qlo QIO |—=
N 3 Am2903 0
Ic Cn.a ARRAY
Am2904 N
lovr OVR
Iz Y4 Ch
Cx
Co
Cr
TEST
INPUT

Figure 7-3. Full interconnection of Am2904-Am2903.



137

Tying the System Together

"106TWY Yum po6zwWYy Jo uonesndde [esidA)  p-, aandiy

Is118 91) Sna Ss3u0qQv

-

{>

Aﬂ

{t

i

0Z6ZWy Y3L1SIO3Y SSIHAAY AHOWIW

o0z6Zwy

Y¥31SI193Y SS3HO0QY ABON3IN

i

fi

il

D

f;

=)

§:

( ( ( [ 6700 q
¥INIO
2 193135
[ ( ﬁ ﬁ T78v| QNYE3d0
12 M 315193
Y31S1934
2062wy AS* wmaae °
™
| — . 'y
AHONIN
MYYO0HJOHIN
ﬁ.n A o=y hn A o=yl ) Fn Aog=y Nag * o=/ wﬂ...."“.u . W o
N il Ny ! N o [ . ‘4 NOILIONOD 2 s
Io 0 HAQ[— 8 0 Y¥AO|— 8 0 HAO|— ® 0, HAO 2282wy dvR 1 0q
veugl veugl vougl veugy
S d 106ZwyY o 1062wy ¢ 1062wy ¢ p— _
SR
1062wy 9 “2 o 3 ° “3 p= SNLYLS ¥IHIO
vy (wvy Crvy Cvy Owvy (nvy vy Cmvy
0 ¢ 0 3 [} «
%9 o ] o, ‘o 0 4 ‘o o 4 ‘o
novd
\V o 30 gnddvn
[
v o0 4
I-{%i0 L]
S118 91 e o,
~ | — %ors % _
-
viiszwy i DY 2D ¥315193y
30v4u3LINI SNB nhd Lt NOILINYLSNE
S8 91 A

(5118 91) SN\ viva




*€06CWY Yum poecwy Jo uoneoydde jeordA ], s—£ aandiy

A‘ 3 $ M%::S-mﬂ.ae. Aﬂ V

Bit-Slice Design

138

orerwy oeZwy
¥31SI1DO3Y SS3HOAY AUONIN ¥3ILS193Y SSIHWAAY ABONIN
£,
7 7 ' 6 7 L] (
ﬁ L]
5 193138
r 7 7 4 2 av| ONvHI4O l_
—{*2 ¥315193Y
w
oty AS+ nnaae 3°
1]
\ 1| y
AHOnIn
MYHDOHJOUIN
N * 2 NMa * il Wm A NI.; Ma % 2 x0n p
N My ¥ N N NGIaNG 2 oy
N PR N 8 ¢ o —{® & wunro 2z6zuy avm ' 0g
w.:Ull q.(U.I -.:U.l -.:U T
] d oszwyY 4 coszwy 4 CosZWY
062wy o ugy 9 “ 9 vy SNLYLS Y3IH10 e —
%is ‘oIS So1s fois %0is ftois %is Cois
%010 ‘o0 %10 foio %010 foo %00 ‘o0 H
va vo ¥Q va
> noud
£
A/ > AN ¢ 30 gniddvn
N ]
HYol0 N
S118 9t Howo  ¥A%
_ — H Yors o |—
M0s " .
V veiezwy 0., YOSZWY »w H3151934
3DV4u3LINI SNE n-2 " NOLLONYLSNI
S18 91

A (5118 9115n@ v1v0 v



Tying the System Together 139

MUX. The mapping PROM decodes the op code and supplies an ad-
dress out on tristate lines to the microprogram sequencer, an Am2910.
The Am2910 supplies the microprogram address to be fetched to the
microprogram memory and supplies, in this case, output enables to the
mapping PROM and the pipeline register. The Am2910 receives (1) a 4
bit instruction out of the pipeline register, (2) an address into its D;
inputs (the source of the address selected by the decode of the instruc-
tion received), and (3) a condition code input on its CC line.

The CC line is connected to a condition code MUX, an Am2922 in
this case, which is a registered MUX—i.e., it latches the selection code
sent to it and therefore is not connected to a pipeline register. It also
has polarity control. The CC line is attached to the CT output of the
Am2904.

The pipeline register is sufficiently wide to contain all of the micro-
instruction fields in a horizontal format. In a typical system this can
vary between 32 and 128 bits. The HEX-29, a generalized register
architecture 16 bit CPU, has a 64 bit microword, with one field with
overlay, The SUPER-16, also a 16 bit system, but with instruction-fetch
overlap and certain I/0O features which allow it to have a machine
instruction execute time of 200 ns, has a 96 bit microword.

The Am2904 is connected to the RALU status outputs and to the
most significant and least significant RAM and Q outputs. It is con-
nected to the system data bus so that the machine level status bits can
be read from or written into the status register.

The ALU consists of four Am2901 RALUs and an Am2902 carry-
lookahead chip. The DA, inputs are connected to the system data bus
through a bus interface device. The Y, outputs are also connected to
the bus interface and are connected to the MAR register. The MAR
register is connected to the system address bus. The A and B address
lines are sourced either from the IR, for register instructions, or from
the pipeline register, for implied register addressing, as selected by the
microinstruction via the operand select MUX.

Figure 7-5 shows the same architecture is implemented using the
Am2903 RALU rather than the Am2901.






_ (Glossary

ACC
ALU

CC
CCU

Cr
C,.CLK
Cs

CPU
cycle time

DIP

DMA
EPROM
firmware

accumulator register

arithmetic logic unit

condition code test input on Am2910

computer control unit—contains ROM or PROM
or WCS: the microsequencer: the IR: the pipe-
line (microinstruction) register; condition code
mux

minimum cycle width

clock signal (rising edge)

microcycle width: also used as clock signal (time
between two rising edges C,)

central processing unit

when microprogramming, usually refers to one
clock cycle: one microcycle or clock cycle being
required to execute one microinstruction where
a microinstruction is equivalent to a microstep
dual in-line pin package (other packages exist
but are not as common)

direct memory access

erasable PROM

program which controls the system: usually
stored in PROM/ROM memory but not re-
stricted to read-only memory

141



142  Bit-Slice Design

FIS
FPLA
Hex
/0

IR
LIFO
LSB
LSI

LSS
macroinstruction
MAR
microinstruction

microprocessor

microprogrammable
microprogrammed
microroutine

MOS
MSB
MSI
MSS
MUX
op code

operand
PC

rPC

pc board
PCB
PLA
PROM

RALU
RAM
ROM

scratchpad registers
SSI

7 ALU exccution

fixed instruction set

field programmable logic delay

hexadecimal

input/output

instruction register

last in, first out

least significant bit

large scale integration (200-1000 gates per pack-
age)

least significant slice

a machine level instruction

memory (main memory) address register
instruction which actually controls the hardware
activity

1 chip containing control logic, registers, and
ALU

user may change the control program

user may not change the control program
sufficient microinstructions to execute one
machine level instruction

metal oxide-silicon technology

most significant bit

medium scale integration

most significant slice

multiplexer, a select-one-of-n device

part of machine level instruction which specifies
function to be performed

data elements which will be operated on
program counter (main memory; machine pro-
grammed)

microprogram counter register; register which
contains address of next microinstruction to be
executed

printed circuit board

printed circuit board

programmable logic array

programmable read-only memory (user pro-
grammed) [used in text also to represent EP-
ROMs and other variations of the basic PROM
concept]

ALU with registers (scratchpad)

read and write memory

read-only memory (factory programmed)

local storage for user; system programs

small scale integration

maximum delay of AWU from instruction lines
stable to ALU output useable



’cuunter clock to output

l
4

’Dim-linc clock to output

t PROM read access

TOS
TTL
VLSI

WCS

Glossary 143

maximum delay clock edge received by counter
until output useable

worst case, maximum value of time ¢;

worst case, minimum value of time ¢;

maximum delay clock edge received by counter
until output usable

maximum time delay from address lines stable
until PROM output stable

top of the stack

transistor-transistor logic

very large scale integration (>1000 gates per
package)

writable control store; control memory built
from read-write-memory and therefore alterable
(for microprogrammable systems)






__Index

2900 Family, 2-7

ac loading, 52-59
accumulator, 13
ACC, see accumulator
ALU, 1,7, 13
Am27S27 (29704), 55-59
Am2901, 6, 111-113
interconnections, 114-115
Am?2903, 6
Am2904, chapter 7
Am29203, 6
Am2909/11, 52-53, 55-59, 67
Am2910, 6, 69-82
Am2914, 6, 85-95
interconnections, 90-95
Am?2925, 7
Am2930, 7
Am?2940, 7
Am?2950, 6
Am?29803, 53-55
Am29811, 52, 67
AmSYS/29, 12
AmZ8000, 1, 3
architecture, 2, 7, 8
CCU, chapter 2, 3
assembler, 9
assembly-level language, 9

branch address, 24

carry-in,

carry-out, 29

CASE, 9

CCU, see computer control unit

computer control unit, 10, 14-95
conditional branch, 28
controller, 1, 19

cost effectiveness, 17-18

CPU, 7

critical path, 42

cycle time, 3, 19, 21, 32-42

decoders, |
DEC PDP 11/45, 3, 17-18
development systems, 12

emulate, 10
EXOR, 1

firmware, 10
FIS (fixed instruction set), 1, 2, 3
format
machine instruction, 11, 97, 103
microword, 11, 13, 23, 28, 32, 55,
108, 110
FORTRAN, 9

GE400, 5
GO TO, 26

hardwired design
advantage, 14
disadvantages, 15

HEX-29, 3

high-level language, 9

IBM SYS/370, 3
IF-THEN-ELSE, 9
In8086, 3



146 Index

instruction register, 235, 27
instruction set, 3
simplex system, 102, 105
Am2910
JZ, 71-72
CONT, 71-72
CJP, 72-73
CJV, 73
LDCT, 73-74, 82
JRP, 74-75
CJS, 75-76
JSRP, 76
CRTN, 76-77
RPCT, 77-78
PUSH, 77-78
RFCT, 77-79
LOOP, 79-80
CJPP, 79-80
TWB, 80-81
interrupts, !, chapter 4
clearing, 84
enable, 84
firmware level, 90
flow diagrams
single level, 83
nested, 85
nested, 84
software level, 95
status fence, 84
INVERT, 1
IR. see instruction register

LSI, 1,6
loops, 49
DO x TIMES, 49
DO UNTIL (WHILE), 49

M68,000, 1

machine-level language, 10, 11

macrocycle, 3

macroinstruction, 3

mapping PROM, 24-27, 65
memory map, 24-27
vector map, 65

MAR, 7, 12, 13

memory map, 24-27

microcycle, 3

microprogram memory, 10-11

microprogrammable, 10
microprogrammed, 10
microprogramming, 5, 6, 10, 12
advantages, 6
microroutine, 24
examples, 30, 33
microword width, 19-21
minicomputers, 5
MOS, 1,2
MSI. 1,2,6
multiplexer, MUX, 1

NAND, 1|
NOR, 1
NOT, I

OVR, 29

PC, 99, 103-104
pipelining, 32-35
pipeline register, 32-35
polled interrupt, 63
PROCEDURE, 9

queueing, 61

registers, 1
reliability, 6
ROM/PROM, I

scratchpad registers, 101-102
sequencers, |
sequential control, 21
sequential execution, 21
SIGMA 9, 5
signal processor, 2, §
simplex system, 7, 34, 98
source code, 7
SSI1, 2,6
stack FULL pin (Am2910), 82
stack size, 49
start address, 24

DO loop. 50

microroutine, 24
status flags, 107-108
status polling, 61
structured programming, 5



subroutines, 43-47
flow diagrams, 45, 47
single level, 45
nested subroutines, 47
SUPER-SIXTEEN (SUPER-16), 3

testing, 43

throughput, 61. 62

timing degradation (with capacitive
load), 57-59

Index 147

TOS, 47
tradeoffs, 3

unconditional branch, 26, 29

vectored interrupt, 63, 65
VLSI, 1

word length, 2
WCS., writable control store, 5, 10



